Heuristically Driven Front Propagation for Geodesic Paths Extraction

In this paper we present a simple modification of the Fast Marching algorithm to speed up the computation using a heuristic. This modification leads to an algorithm that is similar in spirit to the A* algorithm used in artificial intelligence. Using a heuristic allows to extract geodesics from a single source to a single goal very quickly and with a low memory requirement. Any application that needs to compute a lot of geodesic paths can gain benefits from our algorithm. The computational saving is even more important for 3D medical images with tubular structures and for higher dimensional data.

[1]  Laurent D. Cohen,et al.  Fast extraction of minimal paths in 3D images and applications to virtual endoscopy , 2001, Medical Image Anal..

[2]  Changming Sun,et al.  Circular shortest path in images , 2003, Pattern Recognit..

[3]  Petros Maragos,et al.  A fast multigrid implicit algorithm for the evolution of geodesic active contours , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[4]  C. Chui,et al.  Parameterization of Manifold Triangulations , 2002 .

[5]  Richard E. Korf,et al.  Depth-First Iterative-Deepening: An Optimal Admissible Tree Search , 1985, Artif. Intell..

[6]  Hugues Talbot,et al.  Globally Optimal Geodesic Active Contours , 2005, Journal of Mathematical Imaging and Vision.

[7]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Alfred M. Bruckstein,et al.  Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  M. Droske,et al.  An adaptive level set method for interactive segmentation of intracranial tumors , 2005, Neurological Research.

[10]  C. Chui,et al.  Approximation theory X : abstract and classical analysis , 2002 .

[11]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[12]  Ron Kimmel,et al.  Optimal Algorithm for Shape from Shading and Path Planning , 2001, Journal of Mathematical Imaging and Vision.

[13]  W. W. Bledsoe,et al.  Review of "Problem-Solving Methods in Artificial Intelligence by Nils J. Nilsson", McGraw-Hill Pub. , 1971, SGAR.

[14]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[15]  Kai Hormann,et al.  Parameterization of Triangulations and Unorganized Points , 2002, Tutorials on Multiresolution in Geometric Modelling.

[16]  L. Cohen Multiple Contour Finding and Perceptual Grouping using Minimal Paths , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[17]  J. Sethian 1 Advancing Interfaces : Level Set and Fast Marching Methods , 1999 .

[18]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[19]  Hans Rohnert,et al.  Shortest Paths in the Plane with Convex Polygonal Obstacles , 1986, Inf. Process. Lett..

[20]  Bryan Stout,et al.  Smart Moves: Intelligent Pathfinding , 1998 .

[21]  Olivier Lavialle,et al.  Consideration of obstacle danger level in path planning using A* and Fast-Marching optimisation: comparative study , 2003, Signal Process..

[22]  Nils J. Nilsson,et al.  Problem-solving methods in artificial intelligence , 1971, McGraw-Hill computer science series.

[23]  Laurent D. Cohen,et al.  Geodesic Remeshing Using Front Propagation , 2003, International Journal of Computer Vision.

[24]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[25]  G. Papandreou,et al.  A fast multigrid implicit algorithm for the evolution of geodesic active contours , 2004, CVPR 2004.

[26]  Laurent D. Cohen,et al.  Global Minimum for Active Contour Models: A Minimal Path Approach , 1997, International Journal of Computer Vision.