Fractional div-curl quantities and applications to nonlocal geometric equations
暂无分享,去创建一个
[1] F. Béthuel. Un résultat de régularité pour les solutions de l'équation des surfaces à courbure moyenne prescrite , 1992 .
[2] Tristan Rivière,et al. Three-term commutator estimates and the regularity of $\half$-harmonic maps into spheres , 2011 .
[3] Henry C. Wente. An existence theorem for surfaces of constant mean curvature , 1969 .
[4] Luc Tartar,et al. The Compensated Compactness Method Applied to Systems of Conservation Laws , 1983 .
[5] Michael Hinz. Magnetic Energies and Feynman–Kac–Itô Formulas for Symmetric Markov Processes , 2014, 1409.7743.
[6] H. Triebel. Theory Of Function Spaces , 1983 .
[7] A. Schikorra,et al. Invitation to H-systems in higher dimensions: known results, new facts, and related open problems , 2016, 1606.07891.
[8] T. Kuusi,et al. Nonlocal Equations with Measure Data , 2014, 1406.7432.
[10] L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .
[11] F. Murat,et al. The div-curl lemma trente ans après : an extension and an application to the G-convergence of unbounded monotone operators , 2009 .
[12] F. Hélein. Régularité des applications faiblement harmoniques entre une surface et une sphère , 1990 .
[13] S. Conti,et al. The div-curl lemma for sequences whose divergence and curl are compact in W^{-1,1} , 2009, 0907.0397.
[14] A. Schikorra. $$\varepsilon $$ε-regularity for systems involving non-local, antisymmetric operators , 2012, 1205.2852.
[15] A. Schikorra. Integro-Differential Harmonic Maps into Spheres , 2014, 1401.6854.
[16] F. Lio,et al. Horizontal α-Harmonic Maps , 2017 .
[17] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[18] T. Rivière,et al. Horizontal $\alpha$-Harmonic Maps , 2016, 1604.05461.
[19] François Murat. Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant , 1981 .
[20] Alessandro Pigati,et al. Free boundary minimal surfaces: a nonlocal approach , 2017, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.
[21] Piotr Hajłasz,et al. @ 1996 Kluwer Academic Publishers. Printed in the Netherlands. Sobolev Spaces on an Arbitrary Metric Space , 1994 .
[22] Christoph Scheven. Partial regularity for stationary harmonic maps at a free boundary , 2006 .
[23] Leon Simon,et al. Theorems on Regularity and Singularity of Energy Minimizing Maps , 1996 .
[24] Karen Uhlenbeck,et al. Connections withLP bounds on curvature , 1982 .
[25] Jalal Shatah,et al. Weak solutions and development of singularities of the SU(2) σ‐model , 1988 .
[26] F. Hélein,et al. REGULARITE DES APPLICATIONS FAIBLEMENT HARMONIQUES ENTRE UNE SURFACE ET UNE VARIETE RIEMANNIENNE , 1991 .
[27] Frédéric Hélein,et al. Regularity of weakly harmonic maps from a surface into a manifold with symmetries , 1991 .
[28] A. Schikorra. Nonlinear commutators for the fractional p-Laplacian and applications , 2015, 1506.02380.
[29] D. Adams. A note on Riesz potentials , 1975 .
[30] F. Murat,et al. Compacité par compensation , 1978 .
[31] S. Semmes. A primer on hardy spaces, and some remarks on a theorem of evans and müller , 1994 .
[32] H. Takeuchi. Some conformal properties of $p$-harmonic maps and a regularity for sphere-valued $p$-harmonic maps , 1994 .
[33] Changyou Wang,et al. Weak solutions of geometric flows associated to integro-differential harmonic maps , 2015, 1512.08353.
[34] Y. Meyer,et al. Compensated compactness and Hardy spaces , 1993 .
[35] A. Freire,et al. Global weak solutions of the wave map system to compact homogeneous spaces , 1996 .
[36] Jean-Michel Coron,et al. Multiple solutions of H‐systems and Rellich's conjecture , 1984 .
[37] E. Lindgren,et al. Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case , 2015, 1508.01039.
[38] T. Rivière. Conservation laws for conformally invariant variational problems , 2006, math/0603380.
[39] V. Millot,et al. On a Fractional Ginzburg–Landau Equation and 1/2-Harmonic Maps into Spheres , 2013, 1307.7015.
[40] F. Lio. Fractional harmonic maps into manifolds in odd dimension n > 1 , 2010, 1012.2741.
[41] T. Kuusi,et al. Local behavior of fractional $p$-minimizers , 2015, 1505.00361.
[42] M. Fuchs. The blow-up ofp-harmonic maps , 1993 .
[43] Max Gunzburger,et al. A generalized nonlocal vector calculus , 2015 .
[44] Michael Struwe,et al. Partial regularity for harmonic maps and related problems , 2006, math/0604635.
[45] Armin Schikorra,et al. Harmonic analysis meets critical knots. Critical points of the Möbius energy are smooth , 2012, 1202.5426.
[46] E. Lenzmann,et al. Sharp commutator estimates via harmonic extensions , 2016, Nonlinear Analysis.
[47] P. Strzelecki,et al. Regularity of p-harmonic maps from the p-dimensional ball into a sphere , 1994 .
[48] T. Rivière,et al. Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps , 2010, 1012.2438.
[49] Loukas Grafakos,et al. Modern Fourier Analysis , 2008 .
[50] A. Schikorra. A remark on gauge transformations and the moving frame method , 2009, 0906.1972.
[51] L. Tartar. Remarks on oscillations and Stokes' equation , 1985 .
[52] Luc Tartar,et al. Compensated compactness and applications to partial differential equations , 1979 .
[53] L. Grafakos. Classical Fourier Analysis , 2010 .
[54] Winfried Sickel,et al. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.
[55] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[56] B. Bojarski,et al. Pointwise inequalities for Sobolev functions and some applications , 1993 .