Fractional div-curl quantities and applications to nonlocal geometric equations

Abstract We investigate a fractional notion of gradient and divergence operator. We generalize the div-curl estimate by Coifman–Lions–Meyer–Semmes to fractional div-curl quantities, obtaining, in particular, a nonlocal version of Wente's lemma. We demonstrate how these quantities appear naturally in nonlocal geometric equations, which can be used to obtain a theory for fractional harmonic maps analogous to the local theory. Firstly, regarding fractional harmonic maps into spheres, we obtain a conservation law analogous to Shatah's conservation law and give a new regularity proof analogous to Helein's for harmonic maps into spheres. Secondly, we prove regularity for solutions to critical systems with nonlocal antisymmetric potentials on the right-hand side. Since the half-harmonic map equation into general target manifolds has this form, as a corollary, we obtain a new proof of the regularity of half-harmonic maps into general target manifolds following closely Riviere's celebrated argument in the local case. Lastly, the fractional div-curl quantities provide also a new, simpler, proof for Holder continuity of W s , n / s -harmonic maps into spheres and we extend this to an argument for W s , n / s -harmonic maps into homogeneous targets. This is an analogue of Strzelecki's and Toro–Wang's proof for n-harmonic maps into spheres and homogeneous target manifolds, respectively.

[1]  F. Béthuel Un résultat de régularité pour les solutions de l'équation des surfaces à courbure moyenne prescrite , 1992 .

[2]  Tristan Rivière,et al.  Three-term commutator estimates and the regularity of $\half$-harmonic maps into spheres , 2011 .

[3]  Henry C. Wente An existence theorem for surfaces of constant mean curvature , 1969 .

[4]  Luc Tartar,et al.  The Compensated Compactness Method Applied to Systems of Conservation Laws , 1983 .

[5]  Michael Hinz Magnetic Energies and Feynman–Kac–Itô Formulas for Symmetric Markov Processes , 2014, 1409.7743.

[6]  H. Triebel Theory Of Function Spaces , 1983 .

[7]  A. Schikorra,et al.  Invitation to H-systems in higher dimensions: known results, new facts, and related open problems , 2016, 1606.07891.

[8]  T. Kuusi,et al.  Nonlocal Equations with Measure Data , 2014, 1406.7432.

[9]  李幼升,et al.  Ph , 1989 .

[10]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[11]  F. Murat,et al.  The div-curl lemma trente ans après : an extension and an application to the G-convergence of unbounded monotone operators , 2009 .

[12]  F. Hélein Régularité des applications faiblement harmoniques entre une surface et une sphère , 1990 .

[13]  S. Conti,et al.  The div-curl lemma for sequences whose divergence and curl are compact in W^{-1,1} , 2009, 0907.0397.

[14]  A. Schikorra $$\varepsilon $$ε-regularity for systems involving non-local, antisymmetric operators , 2012, 1205.2852.

[15]  A. Schikorra Integro-Differential Harmonic Maps into Spheres , 2014, 1401.6854.

[16]  F. Lio,et al.  Horizontal α-Harmonic Maps , 2017 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  T. Rivière,et al.  Horizontal $\alpha$-Harmonic Maps , 2016, 1604.05461.

[19]  François Murat Compacité par compensation : condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant , 1981 .

[20]  Alessandro Pigati,et al.  Free boundary minimal surfaces: a nonlocal approach , 2017, ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE.

[21]  Piotr Hajłasz,et al.  @ 1996 Kluwer Academic Publishers. Printed in the Netherlands. Sobolev Spaces on an Arbitrary Metric Space , 1994 .

[22]  Christoph Scheven Partial regularity for stationary harmonic maps at a free boundary , 2006 .

[23]  Leon Simon,et al.  Theorems on Regularity and Singularity of Energy Minimizing Maps , 1996 .

[24]  Karen Uhlenbeck,et al.  Connections withLP bounds on curvature , 1982 .

[25]  Jalal Shatah,et al.  Weak solutions and development of singularities of the SU(2) σ‐model , 1988 .

[26]  F. Hélein,et al.  REGULARITE DES APPLICATIONS FAIBLEMENT HARMONIQUES ENTRE UNE SURFACE ET UNE VARIETE RIEMANNIENNE , 1991 .

[27]  Frédéric Hélein,et al.  Regularity of weakly harmonic maps from a surface into a manifold with symmetries , 1991 .

[28]  A. Schikorra Nonlinear commutators for the fractional p-Laplacian and applications , 2015, 1506.02380.

[29]  D. Adams A note on Riesz potentials , 1975 .

[30]  F. Murat,et al.  Compacité par compensation , 1978 .

[31]  S. Semmes A primer on hardy spaces, and some remarks on a theorem of evans and müller , 1994 .

[32]  H. Takeuchi Some conformal properties of $p$-harmonic maps and a regularity for sphere-valued $p$-harmonic maps , 1994 .

[33]  Changyou Wang,et al.  Weak solutions of geometric flows associated to integro-differential harmonic maps , 2015, 1512.08353.

[34]  Y. Meyer,et al.  Compensated compactness and Hardy spaces , 1993 .

[35]  A. Freire,et al.  Global weak solutions of the wave map system to compact homogeneous spaces , 1996 .

[36]  Jean-Michel Coron,et al.  Multiple solutions of H‐systems and Rellich's conjecture , 1984 .

[37]  E. Lindgren,et al.  Higher Sobolev regularity for the fractional p-Laplace equation in the superquadratic case , 2015, 1508.01039.

[38]  T. Rivière Conservation laws for conformally invariant variational problems , 2006, math/0603380.

[39]  V. Millot,et al.  On a Fractional Ginzburg–Landau Equation and 1/2-Harmonic Maps into Spheres , 2013, 1307.7015.

[40]  F. Lio Fractional harmonic maps into manifolds in odd dimension n > 1 , 2010, 1012.2741.

[41]  T. Kuusi,et al.  Local behavior of fractional $p$-minimizers , 2015, 1505.00361.

[42]  M. Fuchs The blow-up ofp-harmonic maps , 1993 .

[43]  Max Gunzburger,et al.  A generalized nonlocal vector calculus , 2015 .

[44]  Michael Struwe,et al.  Partial regularity for harmonic maps and related problems , 2006, math/0604635.

[45]  Armin Schikorra,et al.  Harmonic analysis meets critical knots. Critical points of the Möbius energy are smooth , 2012, 1202.5426.

[46]  E. Lenzmann,et al.  Sharp commutator estimates via harmonic extensions , 2016, Nonlinear Analysis.

[47]  P. Strzelecki,et al.  Regularity of p-harmonic maps from the p-dimensional ball into a sphere , 1994 .

[48]  T. Rivière,et al.  Sub-criticality of non-local Schrödinger systems with antisymmetric potentials and applications to half-harmonic maps , 2010, 1012.2438.

[49]  Loukas Grafakos,et al.  Modern Fourier Analysis , 2008 .

[50]  A. Schikorra A remark on gauge transformations and the moving frame method , 2009, 0906.1972.

[51]  L. Tartar Remarks on oscillations and Stokes' equation , 1985 .

[52]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[53]  L. Grafakos Classical Fourier Analysis , 2010 .

[54]  Winfried Sickel,et al.  Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations , 1996, de Gruyter series in nonlinear analysis and applications.

[55]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[56]  B. Bojarski,et al.  Pointwise inequalities for Sobolev functions and some applications , 1993 .