Information Theory-Based Automatic Multimodal Transfer Function Design

In this paper, we present a new framework for multimodal volume visualization that combines several information-theoretic strategies to define both colors and opacities of the multimodal transfer function. To the best of our knowledge, this is the first fully automatic scheme to visualize multimodal data. To define the fused color, we set an information channel between two registered input datasets, and afterward, we compute the informativeness associated with the respective intensity bins. This informativeness is used to weight the color contribution from both initial 1-D transfer functions. To obtain the opacity, we apply an optimization process that minimizes the informational divergence between the visibility distribution captured by a set of viewpoints and a target distribution proposed by the user. This distribution is defined either from the dataset features, from manually set importances, or from both. Other problems related to the multimodal visualization, such as the computation of the fused gradient and the histogram binning, have also been solved using new information-theoretic strategies. The quality and performance of our approach are evaluated on different datasets.

[1]  Bart M. ter Haar Romeny,et al.  Flexible GPU-Based Multi-Volume Ray-Casting , 2008, VMV.

[2]  László Neumann,et al.  Gradient Estimation in Volume Data using 4D Linear Regression , 2000, Comput. Graph. Forum.

[3]  Kwan-Liu Ma,et al.  Interactive Multi-volume Visualization , 2002, International Conference on Computational Science.

[4]  Gordon L. Kindlmann,et al.  Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering , 1998, VVS.

[5]  Han-Wei Shen,et al.  Dynamic View Selection for Time-Varying Volumes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[6]  Min Chen,et al.  An Information-theoretic Framework for Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[7]  Lijie Xu,et al.  An Information-Theoretic Framework for Flow Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[8]  Stefan Bruckner,et al.  Volume Analysis Using Multimodal Surface Similarity , 2011, IEEE Transactions on Visualization and Computer Graphics.

[9]  Daniel Weiskopf,et al.  Hue-Preserving Color Blending , 2009, IEEE Transactions on Visualization and Computer Graphics.

[10]  Eduard Gröller,et al.  Surface Extraction from Multi-Material Components for Metrology using Dual Energy CT , 2007, IEEE Transactions on Visualization and Computer Graphics.

[11]  Kwan-Liu Ma,et al.  Importance-Driven Time-Varying Data Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  M R DeWeese,et al.  How to measure the information gained from one symbol. , 1999, Network.

[13]  Daniel A Butts,et al.  How much information is associated with a particular stimulus? , 2003, Network.

[14]  Roger Crawfis,et al.  View point evaluation and streamline filtering for flow visualization , 2011, 2011 IEEE Pacific Visualization Symposium.

[15]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[16]  Naftali Tishby,et al.  Agglomerative Information Bottleneck , 1999, NIPS.

[17]  Chaoli Wang,et al.  Information Theory in Scientific Visualization , 2011, Entropy.

[18]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[19]  Ivan Viola,et al.  Automatic Transfer Functions Based on Informational Divergence , 2011, IEEE Transactions on Visualization and Computer Graphics.

[20]  Amitava Datta,et al.  A parallel coordinates style interface for exploratory volume visualization , 2005, IEEE Transactions on Visualization and Computer Graphics.

[21]  Yuriko Takeshima,et al.  A feature-driven approach to locating optimal viewpoints for volume visualization , 2005, VIS 05. IEEE Visualization, 2005..

[22]  Stefan Bruckner,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2010 Isosurface Similarity Maps , 2022 .

[23]  Mateu Sbert,et al.  Multimodal Data Fusion Based on Mutual Information , 2012, IEEE Transactions on Visualization and Computer Graphics.

[24]  Stefan Bruckner,et al.  Information-based Transfer Functions for Multimodal Visualization , 2008, VCBM.

[25]  Mateu Sbert,et al.  Image Segmentation Using Information Bottleneck Method , 2009, IEEE Transactions on Image Processing.

[26]  Georgios Sakas,et al.  Data Intermixing and Multi‐volume Rendering , 1999, Comput. Graph. Forum.

[27]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[28]  Anna Puig,et al.  A framework for fusion methods and rendering techniques of multimodal volume data , 2004, Comput. Animat. Virtual Worlds.

[29]  Ivan Viola,et al.  Feature Emphasis and Contextual Cutaways for Multimodal Medical Visualization , 2007, EuroVis.

[30]  David S. Ebert,et al.  Interactive translucent volume rendering and procedural modeling , 2002, IEEE Visualization, 2002. VIS 2002..

[31]  Joe Michael Kniss,et al.  Gaussian transfer functions for multi-field volume visualization , 2003, IEEE Visualization, 2003. VIS 2003..

[32]  Kwan-Liu Ma,et al.  Visibility-driven transfer functions , 2009, 2009 IEEE Pacific Visualization Symposium.

[33]  Mateu Sbert,et al.  Information Theory Tools for Computer Graphics , 2009, Information Theory Tools for Computer Graphics.

[34]  Han-Wei Shen,et al.  View selection for volume rendering , 2005, VIS 05. IEEE Visualization, 2005..

[35]  Kwan-Liu Ma,et al.  Visibility Histograms and Visibility-Driven Transfer Functions , 2011, IEEE Transactions on Visualization and Computer Graphics.

[36]  Mateu Sbert,et al.  Importance-Driven Focus of Attention , 2006, IEEE Transactions on Visualization and Computer Graphics.