Estimating the redshift distribution of photometric galaxy samples

We present an empirical method for estimating the underlying redshift distribution N(z) of galaxy photometric samples from photometric observables. The method does not rely on photometric redshift (photo-z) estimates for individual galaxies, which typically suffer from biases. Instead, it assigns weights to galaxies in a spectroscopic subsample such that the weighted distributions of photometric observables (e.g., multiband magnitudes) match the corresponding distributions for the photometric sample. The weights are estimated using a nearest-neighbor technique that ensures stability in sparsely populated regions of color-magnitude space. The derived weights are then summed in redshift bins to create the redshift distribution. We apply this weighting technique to data from the Sloan Digital Sky Survey as well as to mock catalogs for the Dark Energy Survey, and compare the results to those from the estimation of photo-z’s derived by a neural network algorithm. We find that the weighting method accurately recovers the underlying redshift distribution, typically better than the photo-z reconstruction, provided the spectroscopic subsample spans the range of photometric observables covered by the photometric sample.

[1]  J. Newman,et al.  The Team Keck Treasury Redshift Survey of the GOODS-North Field , 2004, astro-ph/0401353.

[2]  Hu Zhan,et al.  Cosmic tomographies: baryon acoustic oscillations and weak lensing , 2006 .

[3]  Alexander S. Szalay,et al.  Calibrating photometric redshifts of luminous red galaxies , 2005 .

[4]  S. J. Lilly,et al.  The Canada-France Redshift Survey. I. Introduction to the Survey, Photometric Catalogs, and Surface Brightness Selection Effects , 1995 .

[5]  P. Hall,et al.  The CNOC2 Field Galaxy Redshift Survey. I. The Survey and the Catalog for the Patch CNOC 0223+00 , 2000, astro-ph/0004026.

[6]  M. Giavalisco,et al.  A Deep Wide-Field, Optical, and Near-Infrared Catalog of a Large Area around the Hubble Deep Field North , 2003, astro-ph/0312635.

[7]  R. J. Brunner,et al.  The 2dF-SDSS LRG and QSO (2SLAQ) luminous red galaxy survey , 2006, astro-ph/0607631.

[8]  Masahiro Takada,et al.  Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration , 2006 .

[9]  Huan Lin,et al.  A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6 , 2007, 0708.0030.

[10]  A. Connolly,et al.  Photometric redshifts with surface brightness priors , 2007, 0712.1594.

[11]  Wayne Hu,et al.  Effects of Photometric Redshift Uncertainties on Weak-Lensing Tomography , 2005 .

[12]  A. Connolly,et al.  The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky Survey , 2003, astro-ph/0312036.

[13]  S. L. Morris,et al.  The CNOC2 Field Galaxy Luminosity Function. I. A Description of Luminosity Function Evolution , 1999 .

[14]  Redshift Accuracy Requirements for Future Supernova and Number Count Surveys , 2004, astro-ph/0402002.

[15]  On estimating redshift and luminosity distributions in photometric redshift surveys , 2007, astro-ph/0703537.

[16]  The Evolution of the Galaxy Luminosity Function in the Rest-Frame Blue Band up to z=3.5 , 2003, astro-ph/0306625.

[17]  P. Capak,et al.  A Large Sample of Spectroscopic Redshifts in the ACS-GOODS Region of the Hubble Deep Field North , 2004, astro-ph/0401354.

[18]  I. Smail,et al.  The All-Wavelength Extended Groth Strip International Survey (AEGIS) Data Sets , 2006, astro-ph/0607355.

[19]  Manda Banerji,et al.  Photometric Redshifts for the Dark Energy Survey and VISTA and Implications for Large Scale Structure , 2007, 0711.1059.

[20]  THE DEEP GROTH STRIP GALAXY REDSHIFT SURVEY. III. REDSHIFT CATALOG AND PROPERTIES OF GALAXIES , 2004, astro-ph/0411128.

[21]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[22]  S. J. Lilly,et al.  Precision photometric redshift calibration for galaxy–galaxy weak lensing , 2007, 0709.1692.

[23]  S. Charlot,et al.  Spectral evolution of stellar populations using isochrone synthesis , 1993 .

[24]  Ofer Lahav,et al.  ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .

[25]  M. Lima,et al.  Photometric Redshift Requirements for Self-Calibration of Cluster Dark Energy Studies , 2007, 0709.2871.

[26]  L. Knox,et al.  Baryon Oscillations and Consistency Tests for Photometrically Determined Redshifts of Very Faint Galaxies , 2005, astro-ph/0509260.