Rational Anion Selection of the Electrolyte Additive for Highly Reversible Lithium Plating/Stripping

[1]  Hun‐Gi Jung,et al.  Exploiting the Steric Effect and Low Dielectric Constant of 1,2-Dimethoxypropane for 4.3 V Lithium Metal Batteries , 2022, ACS Energy Letters.

[2]  Yan Zhao,et al.  A new ether-based medium-concentrated electrolyte for lithium–sulfur battery with lean Li anode , 2022, Journal of Power Sources.

[3]  Kai Liu,et al.  Engineering a passivating electric double layer for high performance lithium metal batteries , 2022, Nature Communications.

[4]  Xiulin Fan,et al.  Anion–Diluent Pairing for Stable High-Energy Li Metal Batteries , 2022, ACS Energy Letters.

[5]  Chaoyang Wang,et al.  A bifunctional fluorinated ether co-solvent for dendrite-free and long-term lithium metal batteries , 2022, Nano Energy.

[6]  Meilin Liu,et al.  In Situ Construction of Li3n-Enriched Interface Enabling Ultra-Stable Solid-State Lini0.8co0.1mn0.1o2/Lithium Metal Batteries , 2022, SSRN Electronic Journal.

[7]  Junda Huang,et al.  Li2CO3/LiF‐Rich Heterostructured Solid Electrolyte Interphase with Superior Lithiophilic and Li+‐Transferred Characteristics via Adjusting Electrolyte Additives , 2022 .

[8]  Kyung‐Koo Lee,et al.  Design of a LiF-Rich Solid Electrolyte Interphase Layer through Highly Concentrated LiFSI-THF Electrolyte for Stable Lithium Metal Batteries. , 2021, Small.

[9]  Jiaqi Huang,et al.  Stable Anion-Derived Solid Electrolyte Interphase by Regulating the Electrolyte Structure of Anions in Lithium Metal Batteries. , 2021, Angewandte Chemie.

[10]  F. Walsh,et al.  A nonaqueous organic redox flow battery using multi-electron quinone molecules , 2021, Journal of Power Sources.

[11]  Yunhui Huang,et al.  Fluoride‐Rich Solid‐Electrolyte‐Interface Enabling Stable Sodium Metal Batteries in High‐Safe Electrolytes , 2021 .

[12]  Jiaqi Huang,et al.  Non-Solvating and Low-Dielectricity Cosolvent for Anion-Derived Solid Electrolyte Interphases in Lithium Metal Batteries. , 2021, Angewandte Chemie.

[13]  Ji‐Guang Zhang,et al.  Effects of fluorinated solvents on electrolyte solvation structures and electrode/electrolyte interphases for lithium metal batteries , 2021, Proceedings of the National Academy of Sciences.

[14]  Jiaqi Huang,et al.  Identifying the Critical Anion-Cation Coordination to Regulate Electric Double Layer for Efficient Lithium Metal Anode Interface. , 2020, Angewandte Chemie.

[15]  Yuyang Hou,et al.  Gradient Solid Electrolyte Interphase and Lithium ion Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries. , 2020, Angewandte Chemie.

[16]  Long Chen,et al.  Inorganic-rich Solid Electrolyte Interphase for Advanced Lithium Metal Batteries in Carbonate Electrolytes. , 2020, Angewandte Chemie.

[17]  Ji‐Guang Zhang,et al.  Designing Advanced In Situ Electrode/Electrolyte Interphases for Wide Temperature Operation of 4.5 V Li||LiCoO2 Batteries , 2020, Advanced materials.

[18]  Hongkyung Lee,et al.  Role of inner solvation sheath within salt–solvent complexes in tailoring electrode/electrolyte interphases for lithium metal batteries , 2020, Proceedings of the National Academy of Sciences.

[19]  Li Yang,et al.  Fluorobenzene, A Low‐Density, Economical, and Bifunctional Hydrocarbon Cosolvent for Practical Lithium Metal Batteries , 2020, Advanced Functional Materials.

[20]  Jiaqi Huang,et al.  Regulating Interfacial Chemistry in Lithium-Ion Batteries by a Weakly-Solvating Electrolyte. , 2020, Angewandte Chemie.

[21]  Qiang Zhang,et al.  Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes. , 2020, Accounts of chemical research.

[22]  Xiulin Fan,et al.  Lithium Nitrate Regulated Sulfone Electrolytes for Lithium Metal Batteries. , 2020, Angewandte Chemie.

[23]  Jun Lu,et al.  Fluorinated co-solvent promises Li-S batteries under lean-electrolyte conditions , 2020 .

[24]  J. Choi,et al.  Fluorinated Aromatic Diluent for High-Performance Lithium Metal Batteries. , 2020, Angewandte Chemie.

[25]  Jiaqi Huang,et al.  Regulating Anions in the Solvation Sheath of Lithium Ions for Stable Lithium Metal Batteries , 2019, ACS Energy Letters.

[26]  Jianming Zheng,et al.  Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries , 2018 .

[27]  Yuki Yamada,et al.  Fire-extinguishing organic electrolytes for safe batteries , 2018 .

[28]  Dong Wook Kim,et al.  High‐Performance Lithium‐Oxygen Battery Electrolyte Derived from Optimum Combination of Solvent and Lithium Salt , 2017, Advanced science.

[29]  Colin M. Burke,et al.  Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity , 2015, Proceedings of the National Academy of Sciences.

[30]  M. Watanabe,et al.  Chelate Effects in Glyme/Lithium Bis(trifluoromethanesulfonyl)amide Solvate Ionic Liquids, Part 2: Importance of Solvate-Structure Stability for Electrolytes of Lithium Batteries , 2014 .

[31]  M. Armand,et al.  Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes Containing LiFSI in Linear Carbonate Solvents , 2011 .