Characteristic of Hg removal using zeolite adsorption and Echinodorus palaefolius phytoremediation in subsurface flow constructed wetland (SSF-CW) model

[1]  Poonam,et al.  Wetland Plants , 2020, Contaminants and Clean Technologies.

[2]  A. Taha,et al.  Comparative biosorption study of Hg (II) using raw and chemically activated almond shell , 2018 .

[3]  B. D. Krisnayanti ASGM status in West Nusa Tenggara Province, Indonesia , 2018 .

[4]  A. Caselles-Osorio,et al.  Horizontal subsurface-flow constructed wetland removal efficiency using Cyperus articulatus L. , 2017 .

[5]  D. Sari,et al.  THE EFFECTIVENESS OF FILTER MEDIA AND LIMNOCHARIS FLAVA ON PHYTOREMEDIATION OF LEACHATE , 2016 .

[6]  Jinzhong Zhang,et al.  Mechanisms of CPB Modified Zeolite on Mercury Adsorption in Simulated Wastewater , 2016, Water environment research : a research publication of the Water Environment Federation.

[7]  Feng Li,et al.  Preparation and Characterization of Biochars from Eichornia crassipes for Cadmium Removal in Aqueous Solutions , 2016, PloS one.

[8]  A. Esmaeili,et al.  Removal of mercury(II) from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata , 2015 .

[9]  T. M. Palapa,et al.  Pollution status and mercury sedimentation in small river near amalgamation and cyanidation units of Talawaan-Tatelu gold mining, North Sulawesi , 2015 .

[10]  A. A. Zidan,et al.  Wastewater treatment in horizontal subsurface flow constructed wetlands using different media (setup stage) , 2015 .

[11]  Geoffrey S. Simate,et al.  Acid mine drainage: Challenges and opportunities , 2014 .

[12]  M. Anbia,et al.  Functionalized CMK-3 mesoporous carbon with 2-amino-5-mercapto-1,3,4-thiadiazole for Hg(II) removal from aqueous media. , 2014, Journal of environmental sciences.

[13]  Jianhong Chen,et al.  Removal of elemental mercury by clays impregnated with KI and KBr , 2014 .

[14]  Hou Chen,et al.  Preparation of Polyacrylonitrile Initiated by Modified Corn Starch and Adsorption for Mercury after Modification , 2014 .

[15]  K. Sun,et al.  Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions. , 2014, Marine pollution bulletin.

[16]  Yuanyuan Zhang,et al.  Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. , 2013, Journal of hazardous materials.

[17]  Masood Alam,et al.  Adsorption of Hg(II) from Aqueous Solution Using Adulsa (Justicia adhatoda) Leaves Powder: Kinetic and Equilibrium Studies , 2013 .

[18]  Giovanni DalCorso,et al.  An overview of heavy metal challenge in plants: from roots to shoots. , 2013, Metallomics : integrated biometal science.

[19]  Qiang Xu,et al.  Thiol modified Fe3O4@SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal , 2013 .

[20]  P. Parikh,et al.  Application of β-Zeolite, Zeolite Y, and Mordenite as Adsorbents to Remove Mercury from Aqueous Solutions , 2013 .

[21]  Byung-Joo Kim,et al.  Elemental mercury vapor adsorption of copper-coated porous carbonaceous materials , 2012 .

[22]  C. Xiong,et al.  Preparation of a Novel Heterocycle-Containing Polystyrene Chelating Resin and its Application for Hg(II) Adsorption in Aqueous Solutions , 2012 .

[23]  M. Gil-Díaz,et al.  Mercury uptake by Silene vulgaris grown on contaminated spiked soils. , 2012, Journal of environmental management.

[24]  M. Soleimani,et al.  Elimination of mercury by adsorption onto activated carbon prepared from the biomass material , 2012 .

[25]  T. Trindade,et al.  Removal of mercury (II) by dithiocarbamate surface functionalized magnetite particles: application to synthetic and natural spiked waters. , 2011, Water research.

[26]  Habibollah Younesi,et al.  Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon. , 2011, Journal of hazardous materials.

[27]  H. Basri,et al.  A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation , 2011 .

[28]  A. Lillebø,et al.  Mercury cycling and sequestration in salt marshes sediments: an ecosystem service provided by Juncus maritimus and Scirpus maritimus. , 2011, Environmental pollution.

[29]  M. Pacheco,et al.  Impact of Seasonal Fluctuations on the Sediment-Mercury, its Accumulation and Partitioning in Halimione portulacoides and Juncus maritimus Collected from Ria de Aveiro Coastal Lagoon (Portugal) , 2011 .

[30]  Xin Guo,et al.  Removal of elemental mercury by iodine-modified rice husk ash sorbents. , 2010, Journal of environmental sciences.

[31]  Mark J.H. Simmons,et al.  Adsorption of heavy metals from acid mine drainage by natural zeolite , 2009 .

[32]  Filip Tack,et al.  A comparative study of surface and subsurface flow constructed wetlands for treatment of combined sewer overflows: A greenhouse experiment , 2009 .

[33]  Guy Mercier,et al.  Metal-Contaminated Soils: Remediation Practices and Treatment Technologies , 2008 .

[34]  S. Das,et al.  A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. , 2007, Environmental science & technology.

[35]  E. Tambourgi,et al.  Phytoremediation of chromium by model constructed wetland. , 2006, Bioresource technology.

[36]  B. Inbaraj,et al.  Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa. , 2006, Journal of hazardous materials.

[37]  R. Vieira,et al.  Interaction of natural and crosslinked chitosan membranes with Hg(II) ions , 2006 .

[38]  Abidin Kaya,et al.  Factors affecting adsorption characteristics of Zn2+ on two natural zeolites. , 2006, Journal of hazardous materials.

[39]  Antonio Mario Locci,et al.  Heavy Metals Uptake by Sardinian Natural Zeolites: Experiment and Modeling , 2006 .

[40]  C. Keller,et al.  Changes in Hg fractionation in soil induced by willow , 2005, Plant and Soil.

[41]  J. Peralta-Videa,et al.  PHYTOREMEDIATION OF HEAVY METALS AND STUDY OF THE METAL COORDINATION BY X-RAY ABSORPTION SPECTROSCOPY , 2005 .

[42]  Vijaya Gopal Kakani,et al.  Nitrogen deficiency effects on plant growth, leaf photosynthesis, and hyperspectral reflectance properties of sorghum , 2005 .

[43]  E. Erdem,et al.  The removal of heavy metal cations by natural zeolites. , 2004, Journal of colloid and interface science.

[44]  K. Chojnacka,et al.  The application of natural zeolites for mercury removal: from laboratory tests to industrial scale , 2004 .

[45]  D. Singh,et al.  Basics of Zeolites , 2016 .

[46]  T. M. Palapa,et al.  Heavy Metals in Water of Stream Near an Amalgamation Tailing Ponds in Talawaan – Tatelu Gold Mining, North Sulawesi, Indonesia☆ , 2015 .

[47]  S. K. Wirawan,et al.  DEVELOPMENT OF NATURAL ZEOLITES ADSORBENT : CHEMICAL ANALYSIS AND PRELIMINARY TPD ADSORPTION STUDY , 2015 .

[48]  Priya,et al.  Performance Analysis of Vertical Up-flow Constructed Wetlands for Secondary Treated Effluent , 2014 .

[49]  Al-Hassan Direct smelting of gold concentrates , a safer alternative to mercury amalgamation in small-scale gold mining operations , 2014 .

[50]  J. Ren,et al.  Magnetic self-assembled zeolite clusters for sensitive detection and rapid removal of mercury(II). , 2012, ACS applied materials & interfaces.

[51]  A. Sdiri,et al.  Modelling the adsorption of mercury onto natural and aluminium pillared clays , 2012, Environmental Science and Pollution Research.

[52]  Satish Kumar,et al.  Constructed wetlands: an approach for wastewater treatment , 2011 .

[53]  T. Ramachandra,et al.  PHVTOREMEDIATION: PROCESSES AND MECHANISMS , 2006 .