EphB-Mediated Degradation of the RhoA GEF Ephexin5 Relieves a Developmental Brake on Excitatory Synapse Formation

[1]  Alan R. Mardinly,et al.  The Angelman Syndrome Protein Ube3A Regulates Synapse Development by Ubiquitinating Arc , 2010, Cell.

[2]  R. Prakash,et al.  Ube3a is required for experience-dependent maturation of the neocortex , 2009, Nature Neuroscience.

[3]  G. Turrigiano,et al.  Synapse Development and Plasticity: Roles of Ephrin/eph Receptor Signaling This Review Comes from a Themed Issue on Signalling Mechanisms Edited Properties of Ephrin/eph Underlying Their Role in Synaptogenesis Forward Signaling of Ephb Receptor: Role in Synaptogenesis and Spine Morphogenesis Signal , 2022 .

[4]  Athar N. Malik,et al.  Activity-dependent regulation of inhibitory synapse development by Npas4 , 2008, Nature.

[5]  M. Dalva,et al.  EphB Receptors Couple Dendritic Filopodia Motility to Synapse Formation , 2008, Neuron.

[6]  M. Poo,et al.  Ephrin-B reverse signaling promotes structural and functional synaptic maturation in vivo , 2008, Nature Neuroscience.

[7]  D. Cerretti,et al.  Ligand Binding Induces Cbl‐Dependent EphB1 Receptor Degradation Through the Lysosomal Pathway , 2007, Traffic.

[8]  Kristina D. Micheva,et al.  Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits , 2007, Neuron.

[9]  R. Klein,et al.  Bidirectional Eph-ephrin signaling during axon guidance. , 2007, Trends in cell biology.

[10]  M. Dalva,et al.  Cell adhesion molecules: signalling functions at the synapse , 2007, Nature Reviews Neuroscience.

[11]  Eric C. Griffith,et al.  An RNAi-Based Approach Identifies Molecules Required for Glutamatergic and GABAergic Synapse Development , 2007, Neuron.

[12]  M. Dalva,et al.  Intracellular and Trans-Synaptic Regulation of Glutamatergic Synaptogenesis by EphB Receptors , 2006, The Journal of Neuroscience.

[13]  Steven W. Flavell,et al.  Activity-Dependent Regulation of MEF2 Transcription Factors Suppresses Excitatory Synapse Number , 2006, Science.

[14]  M. Greenberg,et al.  Eph-Dependent Tyrosine Phosphorylation of Ephexin1 Modulates Growth Cone Collapse , 2005, Neuron.

[15]  Suzanne Paradis,et al.  The Rac1-GEF Tiam1 Couples the NMDA Receptor to the Activity-Dependent Development of Dendritic Arbors and Spines , 2005, Neuron.

[16]  C. Der,et al.  GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors , 2005, Nature Reviews Molecular Cell Biology.

[17]  Michelle N. Ngo,et al.  Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus , 2003, The Journal of cell biology.

[18]  N. Mochizuki,et al.  EphA4-Mediated Rho Activation via Vsm-RhoGEF Expressed Specifically in Vascular Smooth Muscle Cells , 2003, Circulation research.

[19]  A. Freywald,et al.  Ephrin-A1 Induces c-Cbl Phosphorylation and EphA Receptor Down-Regulation in T Cells1 , 2003, The Journal of Immunology.

[20]  K. Murai,et al.  Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling , 2003, Nature Neuroscience.

[21]  R. Huganir,et al.  Rapid Induction of Dendritic Spine Morphogenesis by trans-Synaptic EphrinB-EphB Receptor Activation of the Rho-GEF Kalirin , 2003, Neuron.

[22]  David Baltimore,et al.  Germline Transmission and Tissue-Specific Expression of Transgenes Delivered by Lentiviral Vectors , 2002, Science.

[23]  T. Bonhoeffer,et al.  Kinase-Independent Requirement of EphB2 Receptors in Hippocampal Synaptic Plasticity , 2001, Neuron.

[24]  E. Pasquale,et al.  EphB/Syndecan-2 Signaling in Dendritic Spine Morphogenesis , 2001, Neuron.

[25]  M. Sheng,et al.  Regulation of Dendritic Spine Morphology by SPAR, a PSD-95-Associated RapGAP , 2001, Neuron.

[26]  M. Greenberg,et al.  EphA Receptors Regulate Growth Cone Dynamics through the Novel Guanine Nucleotide Exchange Factor Ephexin , 2001, Cell.

[27]  Michael E Greenberg,et al.  EphB Receptors Interact with NMDA Receptors and Regulate Excitatory Synapse Formation , 2000, Cell.

[28]  R. Yuste,et al.  Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. , 2000, Cerebral cortex.

[29]  Xin-Yun Huang,et al.  Structural Basis for Relief of Autoinhibition of the Dbl Homology Domain of Proto-Oncogene Vav by Tyrosine Phosphorylation , 2000, Cell.

[30]  JoAnn Buchanan,et al.  Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo , 2000, Nature Neuroscience.

[31]  Gregor Eichele,et al.  Mutation of the Angelman Ubiquitin Ligase in Mice Causes Increased Cytoplasmic p53 and Deficits of Contextual Learning and Long-Term Potentiation , 1998, Neuron.

[32]  M. Lalande,et al.  UBE3A/E6-AP mutations cause Angelman syndrome , 1996, Nature Genetics.

[33]  M. Greenberg,et al.  Calcium Influx via the NMDA Receptor Induces Immediate Early Gene Transcription by a MAP Kinase/ERK-Dependent Mechanism , 1996, The Journal of Neuroscience.

[34]  Stephen J. Smith,et al.  Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation , 1996, Neuron.

[35]  N. Schaeren-Wiemers,et al.  A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes , 1993, Histochemistry.

[36]  D. Muller,et al.  A simple method for organotypic cultures of nervous tissue , 1991, Journal of Neuroscience Methods.

[37]  Rüdiger Klein,et al.  Bidirectional modulation of synaptic functions by Eph/ephrin signaling , 2009, Nature Neuroscience.

[38]  M. Greenberg,et al.  Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism , 2007, Nature Neuroscience.

[39]  M. Frotscher,et al.  Hippocampal plasticity requires postsynaptic ephrinBs , 2004, Nature Neuroscience.

[40]  C. Der,et al.  Structural basis for the selective activation of Rho GTPases by Dbl exchange factors , 2002, Nature Structural Biology.

[41]  J G Flanagan,et al.  The ephrins and Eph receptors in neural development. , 1998, Annual review of neuroscience.