Site Preference and Stabilization of Antiferromagnetism in M-Substituted Mn 2− x M x Sb (M = Ti, Cr, Co, or Cu)

We applied first-principles total-energy calculations to several compounds Mn21xMxSb (M = Ti, Cr, Co, or Cu) to calculate the total energy. The results indicate that the Ti and Cu (Cr and Co) atoms prefer the Mn(II) site to the Mn(I) site [Mn(I) to Mn(II)]. These results are consistent with experimental observations. The antiferromagnetism (AF) [ferrimagnetism (FR)] is more stable than FR (AF) upon decreasing (increasing) the distance between the Mn(II) and Sb atoms in the z direction in all Mn21xMxSb systems. This result indicates that the environment around the Mn atom plays a very important role in the stabilization of the AF state, as is the case with Mn2Sb11xAsx systems. For Mn21xCoxSb systems, the atomic disorder between the Mn and Co atoms is insensitive to the relative stability of two magnetic phases AF and FR. [doi:10.2320/matertrans.M2014417]

[1]  S. Fujii,et al.  Magnetic and Electronic Structures of Cobalt or Copper Substituted Mn 2 Sb , 2013 .

[2]  R. Rawat,et al.  Metastability in the ferrimagnetic–antiferromagnetic phase transition in Co substituted Mn2Sb , 2008 .

[3]  K. Ziebeck,et al.  Stability of Mn moments and exchange interactions in cobalt substituted Mn2Sb , 2008 .

[4]  T. Goto,et al.  Volume magnetostriction at the AF–FRI metamagnetic transition in the itinerant-electron system Mn2−xTxSb (T=Co, Cr) , 2004 .

[5]  T. Goto,et al.  AF–FRI metamagnetic transition in itinerant Mn2−xCoxSb system: high-field and high-pressure effects , 2002 .

[6]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[7]  Y. Yamaguchi,et al.  Neutron diffraction studies of the ferrimagnetic-antiferromagnetic phase transition in cobalt modified Mn2Sb , 1992 .

[8]  T. Kaneko,et al.  Thermal expansion and pressure effect on magnetic transition of Mn2−xCoxSb , 1990 .

[9]  T. Kanomata,et al.  Magnetic transitions in Mn2−xMxSb (M=3d metals) , 1984 .

[10]  Paul Soven,et al.  Coherent-Potential Model of Substitutional Disordered Alloys , 1967 .

[11]  A. E. Austin,et al.  MAGNETIC STRUCTURES OF CHROMIUM-MODIFIED Mn$sub 2$Sb , 1963 .

[12]  F. Darnell,et al.  X-Ray and Magnetization Studies of Cr-ModifiedMn2Sb , 1963 .

[13]  H. Alperin,et al.  Aspherical Spin Density in the Ferrimagnetic Compound Mn2Sb , 1963 .

[14]  A. E. Austin,et al.  Magnetic Structures of Mn2As and Mn2Sb0.7As0.3 , 1962 .

[15]  W. H. Cloud,et al.  New Modified Mn2Sb Compositions Showing Exchange Inversion , 1962 .

[16]  A. E. Austin,et al.  NEUTRON DIFFRACTION STUDIES OF CHROMIUM-MODIFIED Mn$sub 2$Sb , 1960 .

[17]  好古 三井,et al.  強磁場 X 線回折実験による Mn1.8Co0.2Sb の磁場中結晶評価 , 2012 .

[18]  M. K. Wilkinson,et al.  The magnetic structure of Mn2Sb , 1957 .