Time-Stepping Approximation of Rigid-Body Dynamics with Perfect Unilateral Constraints. I: The Inelastic Impact Case

We consider a discrete mechanical system with a non-trivial mass matrix, subjected to perfect unilateral constraints described by the geometrical inequalities $${f_{\alpha} (q) \geqq 0, \alpha \in \{1, \dots, \nu\} (\nu \geqq 1)}$$. We assume that the transmission of the velocities at impact is governed by Newton’s Law with a coefficient of restitution e = 0 (so that the impact is inelastic). We propose a time-discretization of the second order differential inclusion describing the dynamics, which generalizes the scheme proposed in Paoli (J Differ Equ 211:247–281, 2005) and, for any admissible data, we prove the convergence of approximate motions to a solution of the initial-value problem.

[1]  Michelle Schatzman Penalty method for impact in generalized coordinates , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  Laetitia Paoli,et al.  An existence result for non-smooth vibro-impact problems , 2005 .

[3]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[4]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..

[5]  J. Moreau Standard Inelastic Shocks and the Dynamics of Unilateral Constraints , 1985 .

[6]  Aldo Bressan Incompatibilità dei teoremi di esistenza e di unicità del moto per un tipo molto comune e regolare di sistemi meccanici , 1960 .

[7]  P. Ballard The Dynamics of Discrete Mechanical Systems with Perfect Unilateral Constraints , 2000 .

[8]  Laetitia Paoli,et al.  Penalty Approximation for Dynamical Systems Submitted to Multiple Non-Smooth Constraints , 2002 .

[9]  Laetitia Paoli,et al.  Penalty Approximation for Non-smooth Constraints in Vibroimpact , 2000 .

[10]  L. Paoli,et al.  Approximation et existence en vibro-impact , 1999 .

[11]  Laetitia Paoli,et al.  Vibrations avec contraintes unilatérales et perte d'énergie aux impacts, en dimension finie , 1993 .

[12]  M. Mabrouk A unified variational model for the dynamics of perfect unilateral constraints , 1998 .

[13]  J. Moreau Liaisons unilatérales sans frottement et chocs inélastiques , 1983 .

[14]  R. Jeffery Non-absolutely convergent integrals with respect to functions of bounded variation , 1932 .

[15]  M. Schatzman A class of nonlinear differential equations of second order in time , 1978 .

[16]  Laetitia Paoli Analyse numérique de vibrations avec contraintes unilatérales , 1993 .

[17]  Laetitia Paoli CONTINUOUS DEPENDENCE ON DATA FOR VIBRO-IMPACT PROBLEMS , 2005 .

[18]  M. Marques Differential Inclusions in Nonsmooth Mechanical Problems , 1993 .

[19]  Laetitia Paoli,et al.  Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: cas avec perte d'énergie , 1993 .