Crafting precise multivalent architectures

Multivalency is a powerful strategy in molecular pharmacology that can establish high-affinity binding between multiple conjoined ligands and corresponding biomolecular targets. Recent advances in chemical synthesis techniques have enabled the development of elaborate two-dimensional multivalent displays appended on natural or synthetic molecular scaffolds. These constructs have the potential to address disease targets that otherwise may be classified as ‘undruggable.’ In this review, synthetic strategies to generate and functionalize different classes of scaffolds are evaluated. Particular focus is placed on crafting multivalent assemblies that occupy a ‘middle space’ of molecular weight, along with a consideration of their potential applications in pharmacology.

[1]  G M Whitesides,et al.  Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition. , 1995, Journal of medicinal chemistry.

[2]  K. Kirshenbaum,et al.  Clickity-click: highly functionalized peptoid oligomers generated by sequential conjugation reactions on solid-phase support. , 2006, Organic & biomolecular chemistry.

[3]  Z. Sideratou,et al.  Drug delivery using multifunctional dendrimers and hyperbranched polymers , 2010, Expert opinion on drug delivery.

[4]  T. Kodadek,et al.  High-throughput evaluation of relative cell permeability between peptoids and peptides. , 2008, Bioorganic & medicinal chemistry.

[5]  H. Blackwell,et al.  Construction of peptoids with all trans-amide backbones and peptoid reverse turns via the tactical incorporation of N-aryl side chains capable of hydrogen bonding. , 2010, The Journal of organic chemistry.

[6]  R. Rando,et al.  Specific binding of Hoechst 33258 to site 1 thymidylate synthase mRNA. , 2000, Nucleic acids research.

[7]  A. Schepartz,et al.  Arginine topology controls escape of minimally cationic proteins from early endosomes to the cytoplasm. , 2012, Chemistry & biology.

[8]  Sachdev S Sidhu,et al.  Activation of the proapoptotic death receptor DR5 by oligomeric peptide and antibody agonists. , 2006, Journal of molecular biology.

[9]  W. C. Still,et al.  Inhibition of gene expression in human cells through small molecule-RNA interactions. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  David E. Housman,et al.  Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member , 1992, Cell.

[11]  L. Kiessling,et al.  A General Synthetic Route to Defined, Biologically Active Multivalent Arrays , 1999 .

[12]  Jason E Gestwicki,et al.  Synthetic multivalent ligands as probes of signal transduction. , 2006, Angewandte Chemie.

[13]  S. Durell,et al.  Programmable Multivalent Display of Receptor Ligands using Peptide Nucleic Acid Nanoscaffolds , 2012, Nature Communications.

[14]  J. Ziller,et al.  Synthesis and Applications of RuCl2(CHR‘)(PR3)2: The Influence of the Alkylidene Moiety on Metathesis Activity , 1996 .

[15]  P. Netti,et al.  Clickable functionalization of liposomes with the gH625 peptide from Herpes simplex virus type I for intracellular drug delivery. , 2011, Chemistry.

[16]  K. Kirshenbaum,et al.  Tricks with clicks: modification of peptidomimetic oligomers via copper-catalyzed azide-alkyne [3 + 2] cycloaddition. , 2010, Chemical Society reviews.

[17]  A. Luganini,et al.  Inhibition of Herpes Simplex Virus Type 1 and Type 2 Infections by Peptide-Derivatized Dendrimers , 2011, Antimicrobial Agents and Chemotherapy.

[18]  R. Pieters Maximising multivalency effects in protein-carbohydrate interactions. , 2009, Organic & biomolecular chemistry.

[19]  P. Arora,et al.  Enhanced metabolic stability and protein-binding properties of artificial alpha helices derived from a hydrogen-bond surrogate: application to Bcl-xL. , 2005, Angewandte Chemie.

[20]  K. Kirshenbaum,et al.  Modulation of human estrogen receptor α activity by multivalent estradiol-peptidomimetic conjugates. , 2011, Molecular bioSystems.

[21]  Narendra Kumar Jain,et al.  Dendrimers in oncology: an expanding horizon. , 2009, Chemical reviews.

[22]  Jessica L. Childs-Disney,et al.  Rationally designed small molecules targeting the RNA that causes myotonic dystrophy type 1 are potently bioactive. , 2012, ACS chemical biology.

[23]  G. Jayson,et al.  Alpha-v Integrins as Therapeutic Targets in Oncology , 2007, Cancer investigation.

[24]  D. Harlan,et al.  Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates , 1999, Nature Medicine.

[25]  M. Disney,et al.  Rational and modular design of potent ligands targeting the RNA that causes myotonic dystrophy 2. , 2009, ACS chemical biology.

[26]  Ryan A. Mesch,et al.  Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. , 2010, Nature materials.

[27]  Fred Schaufele,et al.  The structural basis of androgen receptor activation: intramolecular and intermolecular amino-carboxy interactions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Mezzenga,et al.  Carbon nanotubes in the liquid phase: addressing the issue of dispersion. , 2012, Small.

[29]  Karen L Wooley,et al.  Design of polymeric nanoparticles for biomedical delivery applications. , 2012, Chemical Society reviews.

[30]  Erin E. Carlson,et al.  A General Glycomimetic Strategy Yields Non-carbohydrate Inhibitors of Dc-signw , 2022 .

[31]  Kai Ludwig,et al.  Inhibition of influenza virus infection by multivalent sialic-acid-functionalized gold nanoparticles. , 2010, Small.

[32]  K. Kirshenbaum,et al.  Click to fit: versatile polyvalent display on a peptidomimetic scaffold. , 2005, Organic letters.

[33]  George M Whitesides,et al.  Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. , 1998, Angewandte Chemie.

[34]  Angela L. Perkins,et al.  Gold nanoparticles as a platform for creating a multivalent poly-SUMO chain inhibitor that also augments ionizing radiation , 2012, Proceedings of the National Academy of Sciences.

[35]  Bradford G Orr,et al.  A quantitative assessment of nanoparticle-ligand distributions: implications for targeted drug and imaging delivery in dendrimer conjugates. , 2010, ACS nano.

[36]  Ya‐Ping Sun,et al.  Single-walled carbon nanotubes displaying multivalent ligands for capturing pathogens. , 2005, Chemical communications.

[37]  O. Chaloin,et al.  DNA-templated homo- and heterodimerization of peptide nucleic acid encoded oligosaccharides that mimick the carbohydrate epitope of HIV. , 2009, Angewandte Chemie.

[38]  P. Prevelige,et al.  Use of the interior cavity of the P22 capsid for site-specific initiation of atom-transfer radical polymerization with high-density cargo loading. , 2012, Nature chemistry.

[39]  Rabe,et al.  Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation. , 2000, Angewandte Chemie.

[40]  R. Read,et al.  Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands , 2000, Nature.

[41]  M. Tatham,et al.  RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation , 2008, Nature Cell Biology.

[42]  G. O’Toole,et al.  Exploiting dendrimer multivalency to combat emerging and re-emerging infectious diseases. , 2012, Molecular pharmaceutics.

[43]  G M Whitesides,et al.  Polyacrylamides bearing pendant alpha-sialoside groups strongly inhibit agglutination of erythrocytes by influenza A virus: multivalency and steric stabilization of particulate biological systems. , 1994, Journal of medicinal chemistry.

[44]  Rodney J. Ouellette,et al.  Solid-Phase Synthesis of N-Substituted Glycine Oligomers (α-Peptoids) and Derivatives , 2010, Molecules.

[45]  Ravi S Kane,et al.  Thermodynamics of multivalent interactions: influence of the linker. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[46]  D. Ly,et al.  Cell-permeable peptide nucleic acid designed to bind to the 5'-untranslated region of E-cadherin transcript induces potent and sequence-specific antisense effects. , 2006, Journal of the American Chemical Society.

[47]  C. Schengrund,et al.  Oligosaccharide-derivatized dendrimers: defined multivalent inhibitors of the adherence of the cholera toxin B subunit and the heat labile enterotoxin of E. coli to GM1 , 2004, Glycoconjugate Journal.

[48]  P. Nielsen,et al.  In vitro transcription and translation inhibition by anti-promyelocytic leukemia (PML)/retinoic acid receptor alpha and anti-PML peptide nucleic acid. , 1996, Blood.

[49]  Christina Graf,et al.  Multivalency as a chemical organization and action principle. , 2012, Angewandte Chemie.

[50]  Paul J Hergenrother,et al.  Targeting RNA with small molecules. , 2008, Chemical reviews.

[51]  W. Santos,et al.  Toward targeting RNA structure: branched peptides as cell-permeable ligands to TAR RNA. , 2012, ACS chemical biology.

[52]  P. Gorry,et al.  Virucidal activity of the dendrimer microbicide SPL7013 against HIV-1. , 2011, Antiviral research.

[53]  T. Ebbesen,et al.  Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes , 2003, Science.

[54]  Anna Barnard,et al.  Self-assembled multivalency: dynamic ligand arrays for high-affinity binding. , 2012, Angewandte Chemie.

[55]  Marcus Weber,et al.  DNA-programmed spatial screening of carbohydrate–lectin interactions , 2011 .

[56]  N. Stephanopoulos,et al.  Dual-surface modified virus capsids for targeted delivery of photodynamic agents to cancer cells. , 2010, ACS nano.

[57]  J. Shabanowitz,et al.  Androgen Receptor Phosphorylation , 2002, The Journal of Biological Chemistry.

[58]  N. McKeown,et al.  Polyamidoamine Starburst dendrimers as solubility enhancers. , 2000, International journal of pharmaceutics.

[59]  R. Roy,et al.  Design and Creativity in Synthesis of Multivalent Neoglycoconjugates , 2010, Advances in Carbohydrate Chemistry and Biochemistry.

[60]  A. S. Moses,et al.  Imaging and drug delivery using theranostic nanoparticles. , 2010, Advanced drug delivery reviews.

[61]  R. Grubbs,et al.  Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. , 1999, Organic letters.

[62]  Feng Liu,et al.  Implications of pharmacokinetic behavior of lipoplex for its inflammatory toxicity. , 2005, Advanced drug delivery reviews.

[63]  R. Evans,et al.  The steroid and thyroid hormone receptor superfamily. , 1988, Science.

[64]  B. Polizzotti,et al.  Effects of polymer structure on the inhibition of cholera toxin by linear polypeptide-based glycopolymers. , 2006, Biomacromolecules.

[65]  R. J. White,et al.  Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. , 2000, Science.

[66]  Yonghou Jiang,et al.  SPL7013 gel as a topical microbicide for prevention of vaginal transmission of SHIV89.6P in macaques. , 2005, AIDS research and human retroviruses.

[67]  L. Brunsveld,et al.  A supramolecular polymer as a self-assembling polyvalent scaffold. , 2009, Angewandte Chemie.

[68]  Ilia A Guzei,et al.  Extraordinarily robust polyproline type I peptoid helices generated via the incorporation of α-chiral aromatic N-1-naphthylethyl side chains. , 2011, Journal of the American Chemical Society.

[69]  T. Cooper,et al.  RNA-mediated neuromuscular disorders. , 2006, Annual review of neuroscience.

[70]  T. Schumacher,et al.  CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy , 1999, Nature Medicine.

[71]  Karen L. Wooley,et al.  The Importance of Chemistry in Creating Well-Defined Nanoscopic Embedded Therapeutics: Devices Capable of the Dual Functions of Imaging and Therapy , 2011, Accounts of chemical research.

[72]  Jean-Luc Coll,et al.  Template assembled cyclopeptides as multimeric system for integrin targeting and endocytosis. , 2004, Journal of the American Chemical Society.

[73]  M. Mutter,et al.  Template assembled synthetic proteins (TASP) as functional mimetics of proteins , 1996 .

[74]  Using Modularly Assembled Ligands To Bind RNA Internal Loops Separated by Different Distances , 2011, Chembiochem : a European journal of chemical biology.

[75]  Richard Bonneau,et al.  Oligo(N-aryl glycines): a new twist on structured peptoids. , 2008, Journal of the American Chemical Society.

[76]  V. Rotello,et al.  Monolayer coated gold nanoparticles for delivery applications. , 2012, Advanced drug delivery reviews.

[77]  Mark A. Locascio,et al.  Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. , 2008, Nature nanotechnology.

[78]  Carolyn R. Bertozzi,et al.  Chemical Glycobiology , 2001, Science.

[79]  J. Kaldor,et al.  Safety, Tolerability, and Pharmacokinetics of SPL7013 Gel (VivaGel®): A Dose Ranging, Phase I Study , 2010, Sexually transmitted diseases.

[80]  Stephen P. Schoenberger,et al.  T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions , 1998, Nature.

[81]  H. Bien,et al.  Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40 , 1999, Nature Medicine.

[82]  É. Boisselier,et al.  Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. , 2010, Chemical reviews.

[83]  K. Kono,et al.  Water-soluble dendritic unimolecular micelles: their potential as drug delivery agents. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[84]  D. P. Mack,et al.  Discovery of selective, small-molecule inhibitors of RNA complexes--I. The Tat protein/TAR RNA complexes required for HIV-1 transcription. , 1997, Bioorganic & medicinal chemistry.

[85]  K. Kirshenbaum,et al.  Peptoid architectures: elaboration, actuation, and application. , 2008, Current opinion in chemical biology.

[86]  M. Disney,et al.  Recent advances in developing small molecules targeting RNA. , 2012, ACS chemical biology.

[87]  R. M. Owen,et al.  Selective tumor cell targeting using low-affinity, multivalent interactions. , 2007, ACS chemical biology.

[88]  D. Mann,et al.  Development of a proteolytically stable retro-inverso peptide inhibitor of beta-amyloid oligomerization as a potential novel treatment for Alzheimer's disease. , 2010, Biochemistry.

[89]  Inmaculada Fernández,et al.  Non-covalent functionalization of carbon nanotubes with glycolipids: glyconanomaterials with specific lectin-affinity , 2009 .

[90]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[91]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[92]  H. Gronemeyer,et al.  Multivalent DR5 peptides activate the TRAIL death pathway and exert tumoricidal activity. , 2010, Cancer research.

[93]  H. Scher,et al.  Development of a Second-Generation Antiandrogen for Treatment of Advanced Prostate Cancer , 2009, Science.

[94]  Kazuo Maruyama,et al.  Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. , 2011, Advanced drug delivery reviews.

[95]  C. Curti,et al.  Targeting αvβ3 Integrin: Design and Applications of Mono- and Multifunctional RGD-Based Peptides and Semipeptides , 2010 .

[96]  N. Sampson,et al.  Romping the cellular landscape: linear scaffolds for molecular recognition. , 2006, Current opinion in structural biology.

[97]  L. Kiessling,et al.  Synthetic multivalent ligands in the exploration of cell-surface interactions. , 2000, Current opinion in chemical biology.

[98]  Jessica L. Childs-Disney,et al.  Rational design of ligands targeting triplet repeating transcripts that cause RNA dominant disease: application to myotonic muscular dystrophy type 1 and spinocerebellar ataxia type 3. , 2009, Journal of the American Chemical Society.

[99]  Walter H. Moos,et al.  Comparison of the proteolytic susceptibilities of homologous L‐amino acid, D‐amino acid, and N‐substituted glycine peptide and peptoid oligomers , 1995 .

[100]  Richard Bonneau,et al.  Androgen receptor antagonism by divalent ethisterone conjugates in castrate-resistant prostate cancer cells. , 2012, ACS chemical biology.

[101]  Kent Kirshenbaum,et al.  Viral nanoparticles donning a paramagnetic coat: conjugation of MRI contrast agents to the MS2 capsid. , 2006, Nano letters.

[102]  R. Grubbs,et al.  A practical and highly active ruthenium-based catalyst that effects the cross metathesis of acrylonitrile. , 2002, Angewandte Chemie.

[103]  K. Barylyuk,et al.  Hexameric supramolecular scaffold orients carbohydrates to sense bacteria. , 2011, Journal of the American Chemical Society.

[104]  Peter E. Nielsen,et al.  PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules , 1993, Nature.

[105]  E. De Clercq,et al.  The regulation of HIV‐1 transcription: Molecular targets for chemotherapeutic intervention , 2006, Medicinal research reviews.

[106]  J. Tschopp,et al.  The molecular architecture of the TNF superfamily. , 2002, Trends in biochemical sciences.

[107]  R. Kramer,et al.  Spanning binding sites on allosteric proteins with polymer-linked ligand dimers , 1998, Nature.

[108]  G. Whitesides,et al.  Dependence of avidity on linker length for a bivalent ligand-bivalent receptor model system. , 2012, Journal of the American Chemical Society.

[109]  P. Kitov,et al.  On the nature of the multivalency effect: a thermodynamic model. , 2003, Journal of the American Chemical Society.

[110]  Peter H. Seeberger,et al.  Automated synthesis of oligosaccharides as a basis for drug discovery , 2005, Nature Reviews Drug Discovery.

[111]  O. Scherman,et al.  Supramolecular Glycopolymers in Water: A Reversible Route Toward Multivalent Carbohydrate–Lectin Conjugates Using Cucurbit[8]uril , 2011 .

[112]  T. Mccarthy,et al.  Evaluation of dendrimer SPL7013, a lead microbicide candidate against herpes simplex viruses. , 2005, Antiviral research.

[113]  D. Haddleton,et al.  Probing bacterial-toxin inhibition with synthetic glycopolymers prepared by tandem post-polymerization modification: role of linker length and carbohydrate density. , 2012, Angewandte Chemie.

[114]  E. Toone,et al.  The cluster glycoside effect. , 2002, Chemical reviews.

[115]  K. Kirshenbaum,et al.  Peptoids on Steroids: Precise Multivalent Estradiol–Peptidomimetic Conjugates Generated via Azide–Alkyne [3+2] Cycloaddition Reactions , 2007 .

[116]  T. Ebbesen,et al.  Helical Crystallization of Proteins on Carbon Nanotubes: A First Step towards the Development of New Biosensors. , 1999, Angewandte Chemie.

[117]  M. Botta,et al.  High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: nanosized MRI contrast agents. , 2008, Journal of the American Chemical Society.

[118]  Andrew K. Udit,et al.  Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. , 2010, Chemistry & biology.

[119]  M. Veerapandian,et al.  Nanoparticles: functionalization and multifunctional applications in biomedical sciences. , 2010, Current medicinal chemistry.

[120]  Marcus Weber,et al.  Conformational Analysis of Bivalent Estrogen Receptor Ligands: From Intramolecular to Intermolecular Binding , 2011, Chembiochem : a European journal of chemical biology.

[121]  R. Offringa,et al.  C3-symmetric peptide scaffolds are functional mimetics of trimeric CD40L , 2005, Nature chemical biology.

[122]  Helen E Blackwell,et al.  Structure-function relationships in peptoids: recent advances toward deciphering the structural requirements for biological function. , 2009, Organic & biomolecular chemistry.

[123]  J. Cochran,et al.  A diverse set of oligomeric class II MHC-peptide complexes for probing T-cell receptor interactions. , 2000, Chemistry & biology.

[124]  Stephen B. H. Kent,et al.  Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis , 1992 .

[125]  M. Finn,et al.  Cell Targeting with Hybrid Qβ Virus‐Like Particles Displaying Epidermal Growth Factor , 2011, Chembiochem : a European journal of chemical biology.

[126]  Maurizio Prato,et al.  Fullerene C₆₀ as a multifunctional system for drug and gene delivery. , 2011, Nanoscale.

[127]  W. Jencks,et al.  On the attribution and additivity of binding energies. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[128]  N. Sampson,et al.  Amino acid-bearing ROMP polymers with a stereoregular backbone. , 2006, Journal of the American Chemical Society.

[129]  S. Naylor,et al.  Myotonic Dystrophy Type 2 Caused by a CCTG Expansion in Intron 1 of ZNF9 , 2001, Science.

[130]  Paul M. Levine,et al.  Multivalent peptidomimetic conjugates: a versatile platform for modulating androgen receptor activity. , 2012, Journal of the American Chemical Society.

[131]  Francis C Szoka,et al.  Designing dendrimers for biological applications , 2005, Nature Biotechnology.

[132]  Jessica L. Childs-Disney,et al.  Controlling the specificity of modularly assembled small molecules for RNA via ligand module spacing: targeting the RNAs that cause myotonic muscular dystrophy. , 2009, Journal of the American Chemical Society.

[133]  Richard A. Flavell,et al.  Help for cytotoxic-T-cell responses is mediated by CD40 signalling , 1998, Nature.

[134]  L. Butler,et al.  The contribution of different androgen receptor domains to receptor dimerization and signaling. , 2008, Molecular endocrinology.