Theoretical Basis for Intelligent Coordinated Control

This chapter mainly introduces the theoretical basis of intelligent coordinated control algorithm employed in the research, and summarizes its internal operation mechanism and merits and demerits of each intelligent control algorithm, laying a theoretical foundation for subsequent chap

[1]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[2]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[3]  Keith B. Hall,et al.  Correlated Q-Learning , 2003, ICML.

[4]  Craig Boutilier,et al.  The Dynamics of Reinforcement Learning in Cooperative Multiagent Systems , 1998, AAAI/IAAI.

[5]  J. Deneubourg,et al.  Self-organized shortcuts in the Argentine ant , 1989, Naturwissenschaften.

[6]  Gerhard Weiss,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 1999 .

[7]  M. El-Hawary,et al.  Enhancing the particle swarm optimizer via proper parameters selection , 2002, IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No.02CH37373).

[8]  Michael L. Littman,et al.  Friend-or-Foe Q-learning in General-Sum Games , 2001, ICML.

[9]  J. Deneubourg,et al.  The self-organizing exploratory pattern of the argentine ant , 1990, Journal of Insect Behavior.

[10]  Michael H. Bowling,et al.  Convergence and No-Regret in Multiagent Learning , 2004, NIPS.

[11]  James Kennedy,et al.  The particle swarm: social adaptation of knowledge , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[12]  Michael P. Wellman,et al.  Nash Q-Learning for General-Sum Stochastic Games , 2003, J. Mach. Learn. Res..

[13]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.