Towards Optimal Denoising of Image Contrast

Most conventional imaging modalities detect light indirectly by observing high-energy photons. The random nature of photon emission and detection is often the dominant sources of noise in imaging. Such case is referred to as photon-limited imaging, and the noise distribution is well modeled as Poisson. Multiplicative multiscale innovation (MMI) presents a natural model for Poisson count measurement, where the inter-scale relation is represented as random partitioning (binomial distribution) or local image contrast. In this paper, we propose a nonparametric empirical Bayes estimator that minimizes the mean square error of MMI coefficients. The proposed method achieves better performance compared with state-of-the-art methods in both synthetic and real sensor image experiments under low illumination.

[1]  Wu Cheng,et al.  Nonparametric empirical Bayes estimation for multiplicative multiscale innovation in photon-limited imaging , 2015, 2015 IEEE International Conference on Image Processing (ICIP).

[2]  Rebecca Willett,et al.  Multiscale Analysis of Photon-Limited Astronomical Images , 2007 .

[3]  Tieyong Zeng,et al.  Poisson noise removal via learned dictionary , 2010, 2010 IEEE International Conference on Image Processing.

[4]  Thierry Blu,et al.  A New SURE Approach to Image Denoising: Interscale Orthonormal Wavelet Thresholding , 2007, IEEE Transactions on Image Processing.

[5]  H. Robbins An Empirical Bayes Approach to Statistics , 1956 .

[6]  Richard G. Baraniuk,et al.  Wavelet domain filtering for photon imaging systems , 1997, Optics & Photonics.

[7]  M. Ghosh,et al.  Construction of Improved Estimators in Multiparameter Estimation for Discrete Exponential Families , 1983 .

[8]  Wu Cheng,et al.  Corrupted reference image quality assessment , 2012, 2012 19th IEEE International Conference on Image Processing.

[9]  Thierry Blu,et al.  Image Denoising in Mixed Poisson–Gaussian Noise , 2011, IEEE Transactions on Image Processing.

[10]  Keigo Hirakawa,et al.  An Empirical Bayes Em-Wavelet Unification for Simultaneous Denoising, Interpolation, and/Or Demosaicing , 2006, 2006 International Conference on Image Processing.

[11]  J. Zidek,et al.  Simultaneous Estimation of the Means of Independent Poisson Laws , 1975 .

[12]  Keigo Hirakawa,et al.  Approximations to camera sensor noise , 2013, Electronic Imaging.

[13]  Zhou Wang,et al.  Complex Wavelet Structural Similarity: A New Image Similarity Index , 2009, IEEE Transactions on Image Processing.

[14]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[15]  M. Tweedie,et al.  Variance‐Stabilizing Transformation of a Poisson Variate by a Beta Function , 1971 .

[16]  J. G. Skellam The frequency distribution of the difference between two Poisson variates belonging to different populations. , 1946, Journal of the Royal Statistical Society. Series A.

[17]  Ivan Rech,et al.  Integrated electronics for time-resolved array of single-photon avalanche diodes , 2013, Photonics West - Optoelectronic Materials and Devices.

[18]  Robert D. Nowak,et al.  Multiscale Modeling and Estimation of Poisson Processes with Application to Photon-Limited Imaging , 1999, IEEE Trans. Inf. Theory.

[19]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[20]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[21]  A. Lacaita,et al.  Avalanche photodiodes and quenching circuits for single-photon detection. , 1996, Applied optics.

[22]  Patrick J. Wolfe,et al.  Skellam Shrinkage: Wavelet-Based Intensity Estimation for Inhomogeneous Poisson Data , 2009, IEEE Transactions on Information Theory.

[23]  Robert D. Nowak,et al.  A Bayesian multiscale framework for Poisson inverse problems , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[24]  Edoardo Charbon,et al.  A 160×128 single-photon image sensor with on-pixel 55ps 10b time-to-digital converter , 2011, 2011 IEEE International Solid-State Circuits Conference.

[25]  G. Nason,et al.  A Haar-Fisz Algorithm for Poisson Intensity Estimation , 2004 .

[26]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[27]  M. Jansen Multiscale Poisson data smoothing , 2006 .

[28]  Eero P. Simoncelli,et al.  Learning to be Bayesian without Supervision , 2006, NIPS.

[29]  Wu Cheng,et al.  Minimum Risk Wavelet Shrinkage Operator for Poisson Image Denoising , 2015, IEEE Transactions on Image Processing.

[30]  Alessandro Foi,et al.  Optimal Inversion of the Generalized Anscombe Transformation for Poisson-Gaussian Noise , 2013, IEEE Transactions on Image Processing.

[31]  Keigo Hirakawa,et al.  Quantile analysis of image sensor noise distribution , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[32]  E. Kolaczyk Bayesian Multiscale Models for Poisson Processes , 1999 .

[33]  H. Hudson A Natural Identity for Exponential Families with Applications in Multiparameter Estimation , 1978 .

[34]  J. G. Skellam The Frequency Distribution of the Difference between Two Poisson Variates Belonging to Different Populations , 1946 .

[35]  Keigo Hirakawa,et al.  Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise , 2017, IEEE Transactions on Image Processing.

[36]  M. Tweedie,et al.  The Inversion of Cumulant Operators for Power-Series Distributions, and the Approximate Stabilization of Variance by Transformations , 1968 .

[37]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[38]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.