Random puncturing for secrecy

The traditional framework under which error-correcting codes can enable secrecy involves the use of nested codes. While this structure provide us with means to achieve weak secrecy, it is not clear how these codes can be applied to varying wiretap channels. In the spirit of rate-compatible codes, we propose a new framework for coding for the wiretap channel. The proposed scheme is based on random-puncturing, where the puncturing pattern is kept secret from the eavesdropper. Our results indicate that such strategy can indeed achieve high equivocation-rates (even when the channel is degraded) without the need to re-design the underlying codes.

[1]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[2]  Steven W. McLaughlin,et al.  Coding for Cryptographic Security Enhancement Using Stopping Sets , 2011, IEEE Transactions on Information Forensics and Security.

[3]  John M. Shea,et al.  LDPC code design for the BPSK-constrained Gaussian wiretap channel , 2011, 2011 IEEE GLOBECOM Workshops (GC Wkshps).

[4]  Matthieu R. Bloch,et al.  Physical-Layer Security: From Information Theory to Security Engineering , 2011 .

[5]  Mikael Skoglund,et al.  Equivocation of eve using two edge type LDPC codes for the binary erasure wiretap channel , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[6]  Andrea Montanari,et al.  Maxwell Construction: The Hidden Bridge Between Iterative and Maximum a Posteriori Decoding , 2005, IEEE Transactions on Information Theory.

[7]  Andrew Thangaraj,et al.  Strong secrecy for erasure wiretap channels , 2010, 2010 IEEE Information Theory Workshop.

[8]  Michael Mitzenmacher,et al.  A Survey of Results for Deletion Channels and Related Synchronization Channels , 2008, SWAT.

[9]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[10]  Alexander Vardy,et al.  Achieving the secrecy capacity of wiretap channels using Polar codes , 2010, ISIT.

[11]  Byung-Jae Kwak,et al.  LDPC Codes for the Gaussian Wiretap Channel , 2009, IEEE Transactions on Information Forensics and Security.

[12]  A. Robert Calderbank,et al.  Applications of LDPC Codes to the Wiretap Channel , 2004, IEEE Transactions on Information Theory.

[13]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[14]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[15]  Lawrence H. Ozarow,et al.  Wire-tap channel II , 1984, AT&T Bell Laboratories Technical Journal.

[16]  Rüdiger L. Urbanke,et al.  Waterfall region performance of punctured LDPC codes over the BEC , 2009, 2009 IEEE International Symposium on Information Theory.

[17]  Nan Liu,et al.  Wiretap channel with shared key , 2010, 2010 IEEE Information Theory Workshop.