The unassigned distance geometry problem

Studies of distance geometry problems (DGP) have focused on cases where the vertices at the ends of all or most of the given distances are known or assigned, which we call assigned distance geometry problems (aDGPs). In this contribution we consider the unassigned distance geometry problem (uDGP) where the vertices associated with a given distance are unknown, so the graph structure has to be discovered. uDGPs arises when attempting to find the atomic structure of molecules and nanoparticles using X-ray or neutron diffraction data from non-crystalline materials. Rigidity theory provides a useful foundation for both aDGPs and uDGPs, though it is restricted to generic realizations of graphs, and key results are summarized. Conditions for unique realization are discussed for aDGP and uDGP cases, build-up algorithms for both cases are described and experimental results for uDGP are presented.

[1]  J. C. Phillips,et al.  Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys , 1979 .

[2]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[3]  Steven Skiena,et al.  Reconstructing sets from interpoint distances (extended abstract) , 1990, SCG '90.

[4]  Michael Thorpe,et al.  Continuous deformations in random networks , 1983 .

[5]  P M Duxbury,et al.  Ab-initio reconstruction of complex Euclidean networks in two dimensions. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Walter Whiteley,et al.  Recent Advances in the Generic Ridigity of Structures , 1984 .

[7]  Tibor Jordán,et al.  Generic global rigidity of body-bar frameworks , 2013, J. Comb. Theory B.

[8]  B. Hendrickson,et al.  An Algorithm for Two-Dimensional Rigidity Percolation , 1997 .

[9]  C. Moukarzel An efficient algorithm for testing the generic rigidity of graphs in the plane , 1996 .

[10]  S J L Billinge,et al.  The Liga algorithm for ab initio determination of nanostructure. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[11]  Di Wu,et al.  An updated geometric build-up algorithm for solving the molecular distance geometry problems with sparse distance data , 2003, J. Glob. Optim..

[12]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[13]  Bruce Hendrickson,et al.  The Molecule Problem: Exploiting Structure in Global Optimization , 1995, SIAM J. Optim..

[14]  Simon J L Billinge,et al.  Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. , 2004, Chemical communications.

[15]  L. Bécu,et al.  Evidence for three-dimensional unstable flows in shear-banding wormlike micelles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  H. VON HALBAN,et al.  Energy of Neutrons liberated in the Nuclear Fission of Uranium induced by Thermal Neutrons , 1939, Nature.

[17]  Phillip M. Duxbury,et al.  FIRST-ORDER RIGIDITY ON CAYLEY TREES , 1997 .

[18]  Marjorie Senechal A point set puzzle revisited , 2008, Eur. J. Comb..

[19]  Sidney R. Nagel,et al.  Geometric origin of excess low-frequency vibrational modes in weakly connected amorphous solids , 2004, cond-mat/0409687.

[20]  G. Laman On graphs and rigidity of plane skeletal structures , 1970 .

[21]  Michael Nilges,et al.  Ambiguous NOEs and automated NOE assignment , 1998 .

[22]  Bill Jackson,et al.  Egerváry Research Group on Combinatorial Optimization Connected Rigidity Matroids and Unique Realizations of Graphs Connected Rigidity Matroids and Unique Realizations of Graphs , 2022 .

[23]  M F Thorpe,et al.  Algorithms for three-dimensional rigidity analysis and a first-order percolation transition. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  A M Gronenborn,et al.  New methods of structure refinement for macromolecular structure determination by NMR. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Bill Jackson,et al.  Rigid Components in Molecular Graphs , 2007, Algorithmica.

[26]  Jerrold R. Griggs,et al.  Journal of Combinatorial Theory, Series A , 2011 .

[27]  Mireille Boutin,et al.  Which Point Configurations Are Determined by the Distribution of their Pairwise Distances? , 2003, Int. J. Comput. Geom. Appl..

[28]  K. Wuethrich,et al.  The development of nuclear magnetic resonance spectroscopy as a technique for protein structure determination , 1989 .

[29]  G. Morfill,et al.  Effect of strong wakes on waves in two-dimensional plasma crystals. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  A. L. Patterson,et al.  Homometric Structures , 1939, Nature.

[31]  Jacobs,et al.  Generic rigidity percolation: The pebble game. , 1995, Physical review letters.

[32]  Michigan State University,et al.  Crystal structure solution from experimentally determined atomic pair distribution functions , 2010, 1003.1097.

[33]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[34]  Jacobs,et al.  Generic rigidity percolation in two dimensions. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  Phillip M. Duxbury,et al.  COMPARISON OF RIGIDITY AND CONNECTIVITY PERCOLATION IN TWO DIMENSIONS , 1999 .

[36]  D. Jacobs,et al.  Protein flexibility predictions using graph theory , 2001, Proteins.

[37]  D. S. Sivia,et al.  Elementary Scattering Theory: For X-ray and Neutron Users , 2011 .

[38]  B. Hendrickson,et al.  Regular ArticleAn Algorithm for Two-Dimensional Rigidity Percolation: The Pebble Game , 1997 .

[39]  Donald J. Jacobs,et al.  Generic rigidity in three-dimensional bond-bending networks , 1998 .

[40]  Cristian F. Moukarzel Isostatic Phase Transition and Instability in Stiff Granular Materials , 1998 .

[41]  Robert Connelly,et al.  Generic Global Rigidity , 2005, Discret. Comput. Geom..

[42]  Di Wu,et al.  Rigid versus unique determination of protein structures with geometric buildup , 2008, Optim. Lett..

[43]  Simon J. L. Billinge,et al.  Underneath the Bragg Peaks: Structural Analysis of Complex Materials , 2003 .

[44]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[45]  Shin-ichi Tanigawa,et al.  A Proof of the Molecular Conjecture , 2011, Discret. Comput. Geom..

[46]  William F. Punch,et al.  Ab initio Determination of Solid-State Nanostructure. , 2006 .

[47]  Qunfeng Dong,et al.  A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances , 2002, J. Glob. Optim..

[48]  Leo Liberti,et al.  Euclidean Distance Geometry and Applications , 2012, SIAM Rev..

[49]  Duxbury,et al.  Stressed backbone and elasticity of random central-force systems. , 1995, Physical review letters.

[50]  M. F. Thorpe,et al.  Floppy modes and the free energy: Rigidity and connectivity percolation on Bethe lattices , 1999 .

[51]  Holger Gohlke,et al.  A natural coarse graining for simulating large biomolecular motion. , 2006, Biophysical journal.

[52]  Leslie A Kuhn,et al.  Protein unfolding: Rigidity lost , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[53]  G. R. Satchler Elementary Scattering Theory , 1990 .

[54]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.