De Novo Fragment Design for Drug Discovery and Chemical Biology.

Automated molecular de novo design led to the discovery of an innovative inhibitor of death-associated protein kinase 3 (DAPK3). An unprecedented crystal structure of the inactive DAPK3 homodimer shows the fragment-like hit bound to the ATP pocket. Target prediction software based on machine learning models correctly identified additional macromolecular targets of the computationally designed compound and the structurally related marketed drug azosemide. The study validates computational de novo design as a prime method for generating chemical probes and starting points for drug discovery.

[1]  G. Rishton Reactive compounds and in vitro false positives in HTS , 1997 .

[2]  J G Wilson,et al.  Teratogenic action of carbonic anhydrase inhibitors in the rat. , 1968, Teratology.

[3]  C. Murray,et al.  The rise of fragment-based drug discovery. , 2009, Nature chemistry.

[4]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[5]  Doriano Fabbro,et al.  7,8-Dichloro-1-oxo-β-carbolines as a Versatile Scaffold for the Development of Potent and Selective Kinase Inhibitors with Unusual Binding Modes , 2011, Journal of medicinal chemistry.

[6]  V. Rangnekar,et al.  Interaction partners of Dlk/ZIP kinase: co-expression of Dlk/ZIP kinase and Par-4 results in cytoplasmic retention and apoptosis , 1999, Oncogene.

[7]  T. Hunter,et al.  Cancer-associated loss-of-function mutations implicate DAPK3 as a tumor-suppressing kinase. , 2011, Cancer research.

[8]  Shizuo Akira,et al.  ZIP Kinase, a Novel Serine/Threonine Kinase Which Mediates Apoptosis , 1998, Molecular and Cellular Biology.

[9]  Wolfgang Guba,et al.  Neighborhood-preserving visualization of adaptive structure-activity landscapes: application to drug discovery. , 2011, Angewandte Chemie.

[10]  Heiko Zettl,et al.  Wirkstoffe nach Zahlen: reaktionsbasierter De-novo-Entwurf von potenten und selektiven Leitstrukturen für die Krebsforschung† , 2013 .

[11]  Wannian Zhang,et al.  Fragment Informatics and Computational Fragment‐Based Drug Design: An Overview and Update , 2013, Medicinal research reviews.

[12]  M. Okada,et al.  Death-associated protein kinase 3 mediates vascular structural remodelling via stimulating smooth muscle cell proliferation and migration. , 2014, Clinical science.

[13]  Petra Schneider,et al.  Mehrdimensionales De‐novo‐Moleküldesign durch adaptive Fragmentauswahl , 2014 .

[14]  Gisbert Schneider,et al.  Multidimensional de novo design reveals 5-HT2B receptor-selective ligands. , 2015, Angewandte Chemie.

[15]  Markus Hartenfeller,et al.  Drugs by numbers: reaction-driven de novo design of potent and selective anticancer leads. , 2013, Angewandte Chemie.

[16]  So H. Kim,et al.  Pharmacokinetics and pharmacodynamics of azosemide , 2003, Biopharmaceutics & drug disposition.

[17]  Yanli Wang,et al.  PubChem BioAssay: 2014 update , 2013, Nucleic Acids Res..

[18]  Maria F. Sassano,et al.  Automated design of ligands to polypharmacological profiles , 2012, Nature.

[19]  H. Hidaka,et al.  H-series protein kinase inhibitors and potential clinical applications. , 1999, Pharmacology & therapeutics.

[20]  George Papadatos,et al.  The ChEMBL bioactivity database: an update , 2013, Nucleic Acids Res..

[21]  J. Baell,et al.  New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. , 2010, Journal of medicinal chemistry.

[22]  Monya Baker,et al.  Fragment-based lead discovery grows up , 2012, Nature Reviews Drug Discovery.

[23]  T. Haystead,et al.  ZIP kinase, a key regulator of myosin protein phosphatase 1. , 2005, Cellular signalling.

[24]  Brian Hudson,et al.  Strategic Pooling of Compounds for High-Throughput Screening , 1999, J. Chem. Inf. Comput. Sci..

[25]  Stuart L. Schreiber,et al.  Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles , 2010, Proceedings of the National Academy of Sciences.

[26]  Gisbert Schneider,et al.  Computer-based de novo design of drug-like molecules , 2005, Nature Reviews Drug Discovery.

[27]  Angelo D. Favia,et al.  Protein promiscuity and its implications for biotechnology , 2009, Nature Biotechnology.

[28]  Petra Schneider,et al.  Chemically Advanced Template Search (CATS) for Scaffold-Hopping and Prospective Target Prediction for ‘Orphan’ Molecules , 2013, Molecular informatics.

[29]  Gisbert Schneider,et al.  Steering target selectivity and potency by fragment-based de novo drug design. , 2013, Angewandte Chemie.

[30]  Tadashi Shibata,et al.  Teratogenicity of Azosemide, a Loop Diuretic, in Rats, Mice and Rabbits , 1984 .

[31]  A. Hopkins,et al.  Ligand efficiency: a useful metric for lead selection. , 2004, Drug discovery today.

[32]  Petra Schneider,et al.  Multi-objective molecular de novo design by adaptive fragment prioritization. , 2014, Angewandte Chemie.

[33]  Stefan Knapp,et al.  Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites , 2008, The EMBO journal.

[34]  Markus Hartenfeller,et al.  DOGS: Reaction-Driven de novo Design of Bioactive Compounds , 2012, PLoS Comput. Biol..

[35]  W. Guida,et al.  The art and practice of structure‐based drug design: A molecular modeling perspective , 1996, Medicinal research reviews.

[36]  P. Graczyk Gini coefficient: a new way to express selectivity of kinase inhibitors against a family of kinases. , 2007, Journal of medicinal chemistry.

[37]  Petra Schneider,et al.  Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. , 2015, Nature chemistry.