Two Iterative Methods for Solving Linear Interval Systems

Conjugate gradient is an iterative method that solves a linear system , where is a positive definite matrix. We present this new iterative method for solving linear interval systems , where is a diagonally dominant interval matrix, as defined in this paper. Our method is based on conjugate gradient algorithm in the context view of interval numbers. Numerical experiments show that the new interval modified conjugate gradient method minimizes the norm of the difference of and at every step while the norm is sufficiently small. In addition, we present another iterative method that solves , where is a diagonally dominant interval matrix. This method, using the idea of steepest descent, finds exact solution for linear interval systems, where ; we present a proof that indicates that this iterative method is convergent. Also, our numerical experiments illustrate the efficiency of the proposed methods.

[1]  W. Marsden I and J , 2012 .

[2]  G. S. Mahapatra,et al.  Parametric Functional Representation of Interval Number with Arithmetic Operations , 2017 .

[3]  Sergey P. Shary,et al.  A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity , 2002, Reliab. Comput..

[4]  Majid Alavi,et al.  A method for calculating interval linear system , 2014 .

[5]  A. Neumaier Interval methods for systems of equations , 1990 .

[6]  Gregory Levitin,et al.  Optimal completed work dependent loading of components in cold standby systems , 2015, Int. J. Gen. Syst..

[7]  Baoding Liu,et al.  Uncertainty Theory - A Branch of Mathematics for Modeling Human Uncertainty , 2011, Studies in Computational Intelligence.

[8]  Grégoire Allaire,et al.  Numerical Linear Algebra , 2007 .

[9]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[10]  Alireza Soroudi,et al.  Decision making under uncertainty in energy systems: state of the art , 2013, ArXiv.

[11]  Daniel N. Mohsenizadeh,et al.  Extremal Results for Algebraic Linear Interval Systems , 2016 .

[12]  Hans-Jürgen Zimmermann,et al.  Fuzzy set theory , 1992 .

[14]  E. Hansen On the solution of linear algebraic equations with interval coefficients , 1969 .

[15]  Esmaeil Siahlooei,et al.  An Application of Interval Arithmetic for Solving Fully Fuzzy Linear Systems with Trapezoidal Fuzzy Numbers , 2018, Adv. Fuzzy Syst..

[16]  Evgenija D. Popova,et al.  Multiplication Distributivity of Proper and Improper Intervals , 2001, Reliab. Comput..

[17]  E. Kaucher Interval Analysis in the Extended Interval Space IR , 1980 .

[18]  R. B. Kearfott,et al.  A Comparison of some Methods for Solving Linear Interval Equations , 1997 .

[19]  Evgenija D. Popova Outer Bounds for the Parametric Controllable Solution Set with Linear Shape , 2014, SCAN.

[20]  Mehmet Turan Soylemez,et al.  Robust pole assignment in uncertain systems , 1997 .

[21]  Milan Hladı´k Weak and strong solvability of interval linear systems of equations and inequalities , 2013 .

[22]  K. Ganesan,et al.  On Arithmetic Operations of Interval Numbers , 2005, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[23]  M. Hladík,et al.  New Operator and Method for Solving Real Preconditioned Interval Linear Equations , 2013, SIAM J. Numer. Anal..

[24]  Jiri Rohn,et al.  Inverse interval matrix , 1993 .

[25]  B. Datta Numerical Linear Algebra and Applications , 1995 .

[27]  Su-huan Chen,et al.  Dynamic response analysis for structures with interval parameters , 2002 .

[28]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[29]  Felix Mora-Camino,et al.  Fuzzy Dual Numbers , 2018 .

[30]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[31]  Modified Crout’s method for an LU decomposition of an interval matrix , 2018 .

[32]  Dejie Yu,et al.  Interval and subinterval perturbation methods for a structural-acoustic system with interval parameters , 2013 .

[33]  Sergey P. Shary,et al.  Algebraic approach to the interval linear static identification, tolerance, and control problems, or one more application of kaucher arithmetic , 1996, Reliab. Comput..

[34]  D. Datta,et al.  Inverse Interval Matrix: A New Approach , 2011 .

[35]  E. Zieniuk,et al.  The influence of interval arithmetic on the shape of uncertainly defined domains modelled by closed curves , 2018 .

[36]  Svetoslav Markov,et al.  On directed interval arithmetic and its applications , 1996 .

[37]  Dick den Hertog,et al.  Centered solutions for uncertain linear equations , 2017, Comput. Manag. Sci..

[38]  S. Chakraverty,et al.  Solving fully interval linear systems of equations using tolerable solution criteria , 2018, Soft Comput..