characterization of complex peptide mixtures

[1]  Ruedi Aebersold,et al.  Identification of cross-linked peptides from large sequence databases , 2008, Nature Methods.

[2]  Lukas N. Mueller,et al.  SuperHirn – a novel tool for high resolution LC‐MS‐based peptide/protein profiling , 2007, Proteomics.

[3]  Ruedi Aebersold,et al.  The Implications of Proteolytic Background for Shotgun Proteomics*S , 2007, Molecular & Cellular Proteomics.

[4]  D. Muddiman,et al.  Parts-per-billion mass measurement accuracy achieved through the combination of multiple linear regression and automatic gain control in a Fourier transform ion cyclotron resonance mass spectrometer. , 2007, Analytical chemistry.

[5]  Patrick G. A. Pedrioli,et al.  A high-quality catalog of the Drosophila melanogaster proteome , 2007, Nature Biotechnology.

[6]  Ruedi Aebersold,et al.  An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells. , 2007, Molecular bioSystems.

[7]  Lukas N. Mueller,et al.  An integrated mass spectrometric and computational framework for the analysis of protein interaction networks , 2007, Nature Biotechnology.

[8]  Nichole L. King,et al.  Development and validation of a spectral library searching method for peptide identification from MS/MS , 2007, Proteomics.

[9]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[10]  Ruedi Aebersold,et al.  Reproducible isolation of distinct, overlapping segments of the phosphoproteome , 2007, Nature Methods.

[11]  Scott A Gerber,et al.  Large-scale phosphorylation analysis of alpha-factor-arrested Saccharomyces cerevisiae. , 2007, Journal of proteome research.

[12]  I. Tomlinson,et al.  Colorectal cancer and genetic alterations in the Wnt pathway , 2006, Oncogene.

[13]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[14]  M. Mann,et al.  The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins , 2006, Genome Biology.

[15]  Friedrich Lottspeich,et al.  Quantitative Profiling of the Membrane Proteome in a Halophilic Archaeon*S , 2006, Molecular & Cellular Proteomics.

[16]  Brendan K Faherty,et al.  Optimization and Use of Peptide Mass Measurement Accuracy in Shotgun Proteomics*S , 2006, Molecular & Cellular Proteomics.

[17]  M. Mann,et al.  Status of complete proteome analysis by mass spectrometry: SILAC labeled yeast as a model system , 2006, Genome Biology.

[18]  R. Aebersold,et al.  Mass Spectrometry and Protein Analysis , 2006, Science.

[19]  Michelle S. Scott,et al.  Global Survey of Organ and Organelle Protein Expression in Mouse: Combined Proteomic and Transcriptomic Profiling , 2006, Cell.

[20]  Sarah Calvo,et al.  Systematic identification of human mitochondrial disease genes through integrative genomics , 2006, Nature Genetics.

[21]  K. Resing,et al.  Comparison of Label-free Methods for Quantifying Human Proteins by Shotgun Proteomics*S , 2005, Molecular & Cellular Proteomics.

[22]  P. Roepstorff,et al.  Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns* , 2005, Molecular & Cellular Proteomics.

[23]  R. Aebersold,et al.  Scoring proteomes with proteotypic peptide probes , 2005, Nature Reviews Molecular Cell Biology.

[24]  H. Clevers,et al.  Wnt signalling in stem cells and cancer , 2005, Nature.

[25]  Chris F. Taylor,et al.  A common open representation of mass spectrometry data and its application to proteomics research , 2004, Nature Biotechnology.

[26]  Peder Thusgaard Ruhoff,et al.  Experimental Peptide Identification Repository (EPIR) , 2004, Molecular & Cellular Proteomics.

[27]  J. Yates,et al.  A model for random sampling and estimation of relative protein abundance in shotgun proteomics. , 2004, Analytical chemistry.

[28]  J. Shabanowitz,et al.  A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. , 2004, Analytical chemistry.

[29]  Bruno Domon,et al.  Implications of new proteomics strategies for biology and medicine. , 2004, Journal of proteome research.

[30]  M. Campbell,et al.  PANTHER: a library of protein families and subfamilies indexed by function. , 2003, Genome research.

[31]  R. Aebersold,et al.  A statistical model for identifying proteins by tandem mass spectrometry. , 2003, Analytical chemistry.

[32]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[33]  M. Mann,et al.  Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). , 2003, Journal of proteome research.

[34]  R. Aebersold,et al.  Abundance ratio-dependent proteomic analysis by mass spectrometry. , 2003, Analytical chemistry.

[35]  Alexey I Nesvizhskii,et al.  Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. , 2002, Analytical chemistry.

[36]  R. Aebersold,et al.  Approaching complete peroxisome characterization by gas‐phase fractionation , 2002, Electrophoresis.

[37]  R. Aebersold,et al.  Protein identification with a single accurate mass of a cysteine-containing peptide and constrained database searching. , 2000, Analytical chemistry.

[38]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[39]  A. Schmidt,et al.  A novel strategy for quantitative proteomics using isotope‐coded protein labels , 2005, Proteomics.

[40]  Richard D. Smith,et al.  Mass measurement errors caused by “local” frequency perturbations in FTICR mass spectrometry , 2002, Journal of the American Society for Mass Spectrometry.