Towards markerless visual servoing of grasping tasks for humanoid robots

Vision-based grasping for humanoid robots is a challenging problem due to a multitude of factors. First, humanoid robots use an “eye-to-hand” kinematics configuration that, on the contrary to the more common “eye-in-hand” configuration, demands a precise estimate of the position of the robot's hand. Second, humanoid robots have a long kinematic chain from the eyes to the hands, prone to accumulate the calibration errors of the kinematics model, which offsets the measured hand-to-object relative pose from the real one. In this paper, we propose a method able to solve these two issues jointly. A robust pose estimation of the robot's hand is achieved via a 3D model-based stereo-vision algorithm, using an edge-based distance transform metric and synthetically generated images of a robot's arm-hand internal computer-graphics model (kinematics and appearance). Then, a particle-based optimization method adapts on-line the robot's internal model to match the real and the synthetically generated images, effectively compensating the kinematics calibration errors. We evaluate the proposed approach using a position-based visual-servoing method on the iCub robot, showing the importance of the continuous visual feedback in humanoid grasping tasks.

[1]  Giulio Sandini,et al.  The iCub humanoid robot: An open-systems platform for research in cognitive development , 2010, Neural Networks.

[2]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[3]  Giulio Sandini,et al.  Autonomous online generation of a motor representation of the workspace for intelligent whole-body reaching , 2014, Robotics Auton. Syst..

[4]  Jörg Stückler,et al.  NimbRo Explorer: Semiautonomous Exploration and Mobile Manipulation in Rough Terrain , 2015, J. Field Robotics.

[5]  Jae-Bok Song,et al.  Robotic grasping based on efficient tracking and visual servoing using local feature descriptors , 2012 .

[6]  Berthold Bäuml,et al.  Rapid calibration of a multi-sensorial humanoid’s upper body: An automatic and self-contained approach , 2015, Int. J. Robotics Res..

[7]  Giulio Sandini,et al.  Autonomous Online Learning of Reaching Behavior in a humanoid Robot , 2012, Int. J. Humanoid Robotics.

[8]  Qiang Huang,et al.  Hand-eye servo and flexible control of an anthropomorphic arm , 2013, 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[9]  Stefan Schaal,et al.  Robot arm pose estimation by pixel-wise regression of joint angles , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Vincent Lepetit,et al.  Monocular Model-Based 3D Tracking of Rigid Objects: A Survey , 2005, Found. Trends Comput. Graph. Vis..

[11]  Raman Paranjape,et al.  Precise 3D Positioning of a Robotic Arm Using a Single Camera and a Flat Mirror , 2008 .

[12]  Alexandre Bernardino,et al.  Online Body Schema Adaptation Based on Internal Mental Simulation and Multisensory Feedback , 2016, Front. Robot. AI.

[13]  Danica Kragic,et al.  Virtual Visual Servoing for Real-Time Robot Pose Estimation , 2011 .

[14]  Gunilla Borgefors,et al.  Hierarchical Chamfer Matching: A Parametric Edge Matching Algorithm , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Danica Kragic,et al.  Data-Driven Grasp Synthesis—A Survey , 2013, IEEE Transactions on Robotics.

[16]  Daniel Leidner,et al.  Robotic Agents Representing, Reasoning, and Executing Wiping Tasks for Daily Household Chores , 2016, AAMAS.

[17]  Eldert J. van Henten,et al.  Design of an eye-in-hand sensing and servo control framework for harvesting robotics in dense vegetation , 2016 .

[18]  Aude Billard,et al.  Catching Objects in Flight , 2014, IEEE Transactions on Robotics.

[19]  Tamim Asfour,et al.  Representing the robot’s workspace through constrained manipulability analysis , 2015, Auton. Robots.

[20]  Rüdiger Dillmann,et al.  Visual servoing for humanoid grasping and manipulation tasks , 2008, Humanoids 2008 - 8th IEEE-RAS International Conference on Humanoid Robots.

[21]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Sven Behnke,et al.  Focused online visual-motor coordination for a dual-arm robot manipulator , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[23]  P. Moreno,et al.  Reaching and grasping kitchenware objects , 2012, 2012 IEEE/SICE International Symposium on System Integration (SII).

[24]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[25]  Atsuo Takanishi,et al.  Incremental development of multiple tool models for robotic reaching through autonomous exploration , 2012, Paladyn J. Behav. Robotics.

[26]  Alexandre Bernardino,et al.  Benchmarking the Grasping Capabilities of the iCub Hand With the YCB Object and Model Set , 2016, IEEE Robotics and Automation Letters.

[27]  Alexandre Bernardino,et al.  Robotic Hand Pose Estimation Based on Stereo Vision and GPU-enabled Internal Graphical Simulation , 2016, J. Intell. Robotic Syst..

[28]  Arnaud Doucet,et al.  An overview of sequential Monte Carlo methods for parameter estimation in general state-space models , 2009 .

[29]  Seth Hutchinson,et al.  Visual Servo Control Part I: Basic Approaches , 2006 .

[30]  Francisco José Madrid-Cuevas,et al.  Automatic generation and detection of highly reliable fiducial markers under occlusion , 2014, Pattern Recognit..

[31]  Daniel Leidner,et al.  Knowledge-enabled parameterization of whole-body control strategies for compliant service robots , 2016, Auton. Robots.

[32]  Danica Kragic,et al.  Integrating 3D features and virtual visual servoing for hand-eye and humanoid robot pose estimation , 2013, 2013 13th IEEE-RAS International Conference on Humanoid Robots (Humanoids).

[33]  Gunilla Borgefors,et al.  Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..

[34]  Siddhartha S. Srinivasa,et al.  The YCB object and Model set: Towards common benchmarks for manipulation research , 2015, 2015 International Conference on Advanced Robotics (ICAR).

[35]  Don Joven Agravante,et al.  Visual servoing for the REEM humanoid robot's upper body , 2013, 2013 IEEE International Conference on Robotics and Automation.

[36]  Éric Marchand,et al.  Real-time markerless tracking for augmented reality: the virtual visual servoing framework , 2006, IEEE Transactions on Visualization and Computer Graphics.