Improving Approximate Bayesian Computation via Quasi-Monte Carlo
暂无分享,去创建一个
[1] N. Chopin,et al. Sequential Quasi-Monte Carlo , 2014, 1402.4039.
[2] Aaron Smith,et al. The use of a single pseudo-sample in approximate Bayesian computation , 2014, Stat. Comput..
[3] Paul Glasserman,et al. Monte Carlo Methods in Financial Engineering , 2003 .
[4] C. Robert,et al. ABC random forests for Bayesian parameter inference , 2016, Bioinform..
[5] Paul Fearnhead,et al. Constructing Summary Statistics for Approximate Bayesian Computation: Semi-automatic ABC , 2010, 1004.1112.
[6] P. Donnelly,et al. Inferring coalescence times from DNA sequence data. , 1997, Genetics.
[7] Mark M. Tanaka,et al. Sequential Monte Carlo without likelihoods , 2007, Proceedings of the National Academy of Sciences.
[8] Andrew M. Stuart,et al. Importance Sampling: Computational Complexity and Intrinsic Dimension , 2015 .
[9] Paul Marjoram,et al. Markov chain Monte Carlo without likelihoods , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[10] P. L’Ecuyer,et al. Randomized quasi-Monte Carlo: An introduction for practitioners , 2016 .
[11] Arnaud Doucet,et al. An adaptive sequential Monte Carlo method for approximate Bayesian computation , 2011, Statistics and Computing.
[12] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .
[13] Iain Murray,et al. Fast $\epsilon$-free Inference of Simulation Models with Bayesian Conditional Density Estimation , 2016, 1605.06376.
[14] David Welch,et al. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems , 2009, Journal of The Royal Society Interface.
[15] A. W. Kemp,et al. Univariate Discrete Distributions: Johnson/Univariate Discrete Distributions , 2005 .
[16] Jean-Michel Marin,et al. Approximate Bayesian computational methods , 2011, Statistics and Computing.
[17] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .
[18] Anthony Lee,et al. On the choice of MCMC kernels for approximate Bayesian computation with SMC samplers , 2012, Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC).
[19] Richard Wilkinson,et al. Accelerating ABC methods using Gaussian processes , 2014, AISTATS.
[20] Jun S. Liu,et al. Sequential Imputations and Bayesian Missing Data Problems , 1994 .
[21] Anthony Lee,et al. Variance bounding and geometric ergodicity of Markov chain Monte Carlo kernels for approximate Bayesian computation , 2012, 1210.6703.
[22] A. W. Kemp,et al. Univariate Discrete Distributions , 1993 .
[23] M. Blum. Approximate Bayesian Computation: A Nonparametric Perspective , 2009, 0904.0635.
[24] Christian P. Robert,et al. On parameter estimation with the Wasserstein distance , 2017, Information and Inference: A Journal of the IMA.
[25] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[26] Michael U. Gutmann,et al. Bayesian Optimization for Likelihood-Free Inference of Simulator-Based Statistical Models , 2015, J. Mach. Learn. Res..
[27] G. Leobacher,et al. Introduction to Quasi-Monte Carlo Integration and Applications , 2014 .
[28] Frances Y. Kuo,et al. High-dimensional integration: The quasi-Monte Carlo way*† , 2013, Acta Numerica.
[29] Bruno Tuffin,et al. A central limit theorem and improved error bounds for a hybrid-Monte Carlo sequence with applications in computational finance , 2006, J. Complex..
[30] F. J. Hickernell. Koksma–Hlawka Inequality , 2006 .
[31] Aurélien Garivier,et al. On the Complexity of Best-Arm Identification in Multi-Armed Bandit Models , 2014, J. Mach. Learn. Res..
[32] J. Møller. Discussion on the paper by Feranhead and Prangle , 2012 .
[33] M. Gutmann,et al. Fundamentals and Recent Developments in Approximate Bayesian Computation , 2016, Systematic biology.
[34] Jean-Michel Marin,et al. ABC random forests for Bayesian parameter inference , 2019, Bioinform..
[35] Nicolas Chopin,et al. Expectation Propagation for Likelihood-Free Inference , 2011, 1107.5959.
[36] Mathieu Gerber. On integration methods based on scrambled nets of arbitrary size , 2015, J. Complex..
[37] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.
[38] C. Robert,et al. Inference in generative models using the Wasserstein distance , 2017, 1701.05146.
[39] Jean-Marie Cornuet,et al. Efficient learning in ABC algorithms , 2012, 1210.1388.
[40] A. Owen. Scrambled net variance for integrals of smooth functions , 1997 .
[41] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[42] A. Owen. Local antithetic sampling with scrambled nets , 2008, 0811.0528.
[43] Art B. Owen,et al. Monte Carlo extension of quasi-Monte Carlo , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).
[44] O. Papaspiliopoulos,et al. Importance Sampling: Intrinsic Dimension and Computational Cost , 2015, 1511.06196.
[45] Andrew R. Francis,et al. Using Approximate Bayesian Computation to Estimate Tuberculosis Transmission Parameters From Genotype Data , 2006, Genetics.
[46] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.