Visual assessment of multi-photon interference

Classical machine learning algorithms can provide insights on high-dimensional processes that are hardly accessible with conventional approaches. As a notable example, t-distributed Stochastic Neighbor Embedding (t-SNE) represents the state of the art for visualization of data sets of large dimensionality. An interesting question is then if this algorithm can provide useful information also in quantum experiments with very large Hilbert spaces. Leveraging these considerations, in this work we apply t-SNE to probe the spatial distribution of n-photon events in m-dimensional Hilbert spaces, showing that its findings can be beneficial for validating genuine quantum interference in boson sampling experiments. In particular, we find that nonlinear dimensionality reduction is capable to capture distinctive features in the spatial distribution of data related to multi-photon states with different evolutions. We envisage that this approach will inspire further theoretical investigations, for instance for a reliable assessment of quantum computational advantage.

[1]  Fabio Sciarrino,et al.  Optimal photonic indistinguishability tests in multimode networks. , 2017, Science bulletin.

[2]  Andrew R. Jamieson,et al.  Exploring nonlinear feature space dimension reduction and data representation in breast Cadx with Laplacian eigenmaps and t-SNE. , 2009, Medical physics.

[3]  Gennady L. Andrienko,et al.  Exploratory analysis of spatial and temporal data - a systematic approach , 2005 .

[4]  Nathan Wiebe,et al.  Pattern recognition techniques for Boson Sampling validation , 2017, Physical Review X.

[5]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[6]  Nathan Wiebe,et al.  Experimental statistical signature of many-body quantum interference , 2018 .

[7]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[8]  B. J. Metcalf,et al.  Boson Sampling on a Photonic Chip , 2012, Science.

[9]  Gregor Weihs,et al.  Many-body quantum interference on hypercubes , 2016, 1607.00836.

[10]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[11]  Jian-Wei Pan,et al.  Long-distance copropagation of quantum key distribution and terabit classical optical data channels , 2016, 1610.04475.

[12]  Yong-Jian Gu,et al.  A certification scheme for the boson sampler , 2016 .

[13]  V S Shchesnovich,et al.  Universality of Generalized Bunching and Efficient Assessment of Boson Sampling. , 2015, Physical review letters.

[14]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[15]  Vincenzo Tamma,et al.  Experimental Time-Resolved Interference with Multiple Photons of Different Colors. , 2018, Physical review letters.

[16]  Mehrdad Nourani,et al.  Nonlinear dimension reduction for EEG-based epileptic seizure detection , 2016, 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI).

[17]  Andrew G. White,et al.  Boson Sampling with Single-Photon Fock States from a Bright Solid-State Source. , 2016, Physical review letters.

[18]  Elmar Eisemann,et al.  Linear tSNE optimization for the Web , 2018, ArXiv.

[19]  Aram W. Harrow,et al.  Quantum computational supremacy , 2017, Nature.

[20]  Raphaël Clifford,et al.  The Classical Complexity of Boson Sampling , 2017, SODA.

[21]  Jens Eisert,et al.  Boson-Sampling in the light of sample complexity , 2013, ArXiv.

[22]  Andrew G. White,et al.  Photonic Boson Sampling in a Tunable Circuit , 2012, Science.

[23]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[24]  N. Spagnolo,et al.  Photonic quantum information processing: a review , 2018, Reports on progress in physics. Physical Society.

[25]  Gregor Weihs,et al.  Totally destructive interference for permutation-symmetric many-particle states , 2018, Physical Review A.

[26]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[27]  Martin Wattenberg,et al.  How to Use t-SNE Effectively , 2016 .

[28]  Xiao Jiang,et al.  Toward Scalable Boson Sampling with Photon Loss. , 2018, Physical review letters.

[29]  Christian Schneider,et al.  High-efficiency multiphoton boson sampling , 2017, Nature Photonics.

[30]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[31]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[32]  J. O'Brien,et al.  On the experimental verification of quantum complexity in linear optics , 2013, Nature Photonics.

[33]  Nicolò Spagnolo,et al.  General rules for bosonic bunching in multimode interferometers. , 2013, Physical review letters.

[34]  Nicolò Spagnolo,et al.  Bayesian approach to Boson sampling validation , 2014 .

[35]  Andreas Buchleitner,et al.  Statistical benchmark for BosonSampling , 2014, 1410.8547.

[36]  Nicolò Spagnolo,et al.  Experimental validation of photonic boson sampling , 2014, Nature Photonics.

[37]  A. Crespi,et al.  Integrated multimode interferometers with arbitrary designs for photonic boson sampling , 2013, Nature Photonics.

[38]  Fabio Sciarrino,et al.  Experimental generalized quantum suppression law in Sylvester interferometers , 2017, 1705.08650.

[39]  Been Kim,et al.  Towards A Rigorous Science of Interpretable Machine Learning , 2017, 1702.08608.

[40]  Douglas Eck,et al.  Learning Features from Music Audio with Deep Belief Networks , 2010, ISMIR.

[41]  Andrea Crespi,et al.  Suppression laws for multiparticle interference in Sylvester interferometers , 2015, 1502.06372.

[42]  Scott Aaronson,et al.  Bosonsampling is far from uniform , 2013, Quantum Inf. Comput..

[43]  Yu He,et al.  Time-Bin-Encoded Boson Sampling with a Single-Photon Device. , 2016, Physical review letters.

[44]  Nicolò Spagnolo,et al.  Suppression law of quantum states in a 3D photonic fast Fourier transform chip , 2016, Nature Communications.

[45]  Olivier Thonnard,et al.  An Experimental Study of Diversity with Off-the-Shelf AntiVirus Engines , 2009, 2009 Eighth IEEE International Symposium on Network Computing and Applications.

[46]  Zenghui Wang,et al.  Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review , 2017, Neural Computation.

[47]  Philip Walther,et al.  Experimental boson sampling , 2012, Nature Photonics.

[48]  Andreas Buchleitner,et al.  Stringent and efficient assessment of boson-sampling devices. , 2013, Physical review letters.

[49]  Nicolò Spagnolo,et al.  Experimental scattershot boson sampling , 2015, Science Advances.

[50]  Izhar Wallach,et al.  The protein-small-molecule database, a non-redundant structural resource for the analysis of protein-ligand binding , 2009, Bioinform..

[51]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[52]  Barry C. Sanders,et al.  Generalized Multiphoton Quantum Interference , 2014, 1403.3433.