TES atmospheric profile retrieval characterization: an orbit of simulated observations

We test the accuracy of our error analysis and retrieval performance by examining retrievals over an orbits' worth of simulated data covering a variety of atmospheric conditions. The use of simulated data allows validation of the error analysis and retrieval algorithm by comparisons to the true values. To demonstrate typical results, two example retrievals are shown, along with associated diagnostic information. Curtain plots display comparisons between the retrieved results, the true values, and the initial guesses. The results show that the Tropospheric Emission Spectrometer (TES) retrieval algorithm is robust under a variety of atmospheric conditions, that TES can improve on the a priori for nadir species Tatim H/sub 2/O, O/sub 3/, and CO, and that the predicted errors match well with the actual retrieved errors. The target scenes (nadir, ocean, cloud-free) simulate conditions that are most easily validated with real data, and comparisons of on orbit results can be made with this baseline.

[1]  Jennifer A. Logan,et al.  An analysis of ozonesonde data for the troposphere : recommendations for testing 3-D models and development of a gridded climatology for tropospheric ozone , 1999 .

[2]  Tilman Steck,et al.  Methods for determining regularization for atmospheric retrieval problems. , 2002, Applied optics.

[3]  M. Iacono,et al.  Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor , 1992 .

[4]  Reinhard Beer,et al.  Tropospheric emission spectrometer: retrieval method and error analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Jennifer A. Logan,et al.  An analysis of ozonesonde data for the lower stratosphere: Recommendations for testing models , 1999 .

[6]  K. Masuda,et al.  Emissivity of pure and sea waters for the model sea surface in the infrared window regions , 1988 .

[7]  Reinhard Beer,et al.  TES on the aura mission: scientific objectives, measurements, and analysis overview , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[8]  K. Bowman,et al.  Tropospheric Emission Spectrometer (TES) Level 1B Algorithm Theoretical Basis Document , 2000 .

[9]  Shepard A. Clough,et al.  Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection , 2004 .

[10]  B. Connor,et al.  Intercomparison of remote sounding instruments , 1999 .

[11]  Reinhard Beer,et al.  Forward model and Jacobians for Tropospheric Emission Spectrometer retrievals , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[12]  K. Bowman,et al.  Implementation of cloud retrievals for Tropospheric Emission Spectrometer (TES) atmospheric retrievals: part 1. Description and characterization of errors on trace gas retrievals , 2006 .

[13]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) , 1998, Defense, Security, and Sensing.

[14]  Philip J. Rasch,et al.  MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description , 1998 .

[15]  R. Garcia,et al.  Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere , 2004 .

[16]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[17]  David M. Rider,et al.  TES level 1 algorithms: interferogram processing, geolocation, radiometric, and spectral calibration , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Kevin W. Bowman,et al.  Calculation of altitude-dependent tikhonov constraints for TES nadir retrievals , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Rolando R. Garcia,et al.  Seasonal variation of methane, water vapor, and nitrogen oxides near the tropopause: Satellite observations and model simulations , 2004 .

[20]  Ross N. Hoffman,et al.  Potential of observations from the Tropospheric Emission Spectrometer to constrain continental sources of carbon monoxide , 2003 .

[21]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[22]  M. Iacono,et al.  Line‐by‐line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons , 1995 .

[23]  R. Norton,et al.  New apodizing functions for Fourier spectrometry , 1976 .

[24]  David M. Rider,et al.  Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite , 2001 .