Fiber optic dynamic electric field sensor based on nematic liquid crystal Fabry-Perot etalon

We propose a fiber-optic dynamic electric field sensor using a nematic liquid crystal (NLC) Fabry-Perot etalon and a wavelength-swept laser. The transmission wavelength of the NLC Fabry-Perot etalon depends on the applied electric field intensity. The change in the effective refractive index of the NLC is measured while changing the applied electric field intensity. It decreases from 1.67 to 1.51 as the applied the electric field intensity is increased. Additionally, we successfully measure the dynamic variation of the electric field using the high-speed wavelength-swept laser. By measuring the modulation frequency of the transmission peaks in the temporal domain, the frequency of the modulated electric field can be estimated.