A Practical Phase Field Method for an Elliptic Surface PDE

We consider a diffuse interface approach for solving an elliptic PDE on a given closed hypersurface. The method is based on a (bulk) finite element scheme employing numerical quadrature for the phase field function and hence is very easy to implement compared to other approaches. We estimate the error in natural norms in terms of the spatial grid size, the interface width and the order of the underlying quadrature rule. Numerical test calculations are presented which confirm the form of the error bounds.

[1]  Maxim A. Olshanskii,et al.  A narrow-band unfitted finite element method for elliptic PDEs posed on surfaces , 2014, Math. Comput..

[2]  Charles M. Elliott,et al.  Unfitted Finite Element Methods Using Bulk Meshes for Surface Partial Differential Equations , 2013, SIAM J. Numer. Anal..

[3]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[4]  Arnold Reusken,et al.  Analysis of trace finite element methods for surface partial differential equations , 2015 .

[5]  Alan Demlow,et al.  An Adaptive Finite Element Method for the Laplace-Beltrami Operator on Implicitly Defined Surfaces , 2007, SIAM J. Numer. Anal..

[6]  M. Burger Finite element approximation of elliptic partial differential equations on implicit surfaces , 2009 .

[7]  M. Olshanskii,et al.  Non-degenerate Eulerian finite element method for solving PDEs on surfaces , 2013, 1301.4707.

[8]  Alan Demlow,et al.  Higher-Order Finite Element Methods and Pointwise Error Estimates for Elliptic Problems on Surfaces , 2009, SIAM J. Numer. Anal..

[9]  C. M. Elliott,et al.  Finite element analysis for a coupled bulk-surface partial differential equation , 2013 .

[10]  C. M. Elliott,et al.  Numerical computation of advection and diffusion on evolving diffuse interfaces , 2011 .

[11]  Ricardo H. Nochetto,et al.  Finite Element Methods for the Laplace-Beltrami Operator , 2019, Geometric Partial Differential Equations - Part I.

[12]  A. Schmidt,et al.  Design of Adaptive Finite Element Software , 2005 .

[13]  Charles M. Elliott,et al.  Finite element methods for surface PDEs* , 2013, Acta Numerica.

[14]  John W. Barrett,et al.  Finite Element Approximation of a Phase Field Model for Void Electromigration , 2004, SIAM J. Numer. Anal..

[15]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[16]  Peter Hansbo,et al.  A stabilized cut finite element method for partial differential equations on surfaces: The Laplace–Beltrami operator , 2013, 1312.1097.

[17]  Arnold Reusken,et al.  A Finite Element Level Set Redistancing Method Based on Gradient Recovery , 2013, SIAM J. Numer. Anal..

[18]  G. Dziuk Finite Elements for the Beltrami operator on arbitrary surfaces , 1988 .

[19]  Maxim A. Olshanskii,et al.  A finite element method for surface PDEs: matrix properties , 2009, Numerische Mathematik.

[20]  Maxim A. Olshanskii,et al.  An Adaptive Surface Finite Element Method Based on Volume Meshes , 2012, SIAM J. Numer. Anal..

[21]  P. Hansbo,et al.  Full gradient stabilized cut finite element methods for surface partial differential equations , 2016, 1602.01512.

[22]  A. Voigt,et al.  PDE's on surfaces---a diffuse interface approach , 2006 .

[23]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[24]  Christoph Lehrenfeld,et al.  Analysis of a High-Order Trace Finite Element Method for PDEs on Level Set Surfaces , 2016, SIAM J. Numer. Anal..

[25]  Charles M. Elliott,et al.  ANALYSIS OF A DIFFUSE INTERFACE APPROACH TO AN ADVECTION DIFFUSION EQUATION ON A MOVING SURFACE , 2009 .

[26]  Klaus Deckelnick,et al.  Stability and error analysis for a diffuse interface approach to an advection–diffusion equation on a moving surface , 2018, Numerische Mathematik.

[27]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[28]  Colin B. Macdonald,et al.  The Implicit Closest Point Method for the Numerical Solution of Partial Differential Equations on Surfaces , 2009, SIAM J. Sci. Comput..

[29]  Charles M. Elliott,et al.  An h-narrow band finite-element method for elliptic equations on implicit surfaces , 2010 .

[30]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .