CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method

[1]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[2]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[3]  R. Kouhia,et al.  A linear nonconforming finite element method for nearly incompressible elasticity and stokes flow , 1995 .

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  S. C. Brenner,et al.  Linear finite element methods for planar linear elasticity , 1992 .

[6]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[7]  D. Malkus,et al.  Mixed finite element methods—reduced and selective integration techniques: a unification of concepts , 1990 .

[8]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[9]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[10]  F. Brezzi,et al.  On the Stabilization of Finite Element Approximations of the Stokes Equations , 1984 .

[11]  M. Vogelius An analysis of thep-version of the finite element method for nearly incompressible materials , 1983 .

[12]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[13]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[14]  G. A. Baker Finite element methods for elliptic equations using nonconforming elements , 1977 .

[15]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .