How monoxenous trypanosomatids revealed hidden feeding habits of their tsetse fly hosts.

Tsetse flies are well-known vectors of trypanosomes pathogenic for humans and livestock. For these strictly blood-feeding viviparous flies, the host blood should be the only source of nutrients and liquids, as well as any exogenous microorganisms colonising their intestine. Here we describe the unexpected finding of several monoxenous trypanosomatids in their gut. In a total of 564 individually examined Glossina (Austenia) tabaniformis (Westwood) (436 specimens) and Glossina (Nemorhina) fuscipes fuscipes (Newstead) (128 specimens) captured in the Dzanga-Sangha Protected Areas, Central African Republic, 24 (4.3%) individuals were infected with monoxenous trypanosomatids belonging to the genera Crithidia Léger, 1902; Kentomonas Votýpka, Yurchenko, Kostygov et Lukeš, 2014; Novymonas Kostygov et Yurchenko, 2020; Obscuromonas Votýpka et Lukeš, 2021; and Wallacemonas Kostygov et Yurchenko, 2014. Moreover, additional 20 (3.5%) inspected tsetse flies harboured free-living bodonids affiliated with the genera Dimastigella Sandon, 1928; Neobodo Vickerman, 2004; Parabodo Skuja, 1939; and Rhynchomonas Klebs, 1892. In the context of the recently described feeding behaviour of these dipterans, we propose that they become infected while taking sugar meals and water, providing indirect evidence that blood is not their only source of food and liquids.

[1]  V. Yurchenko,et al.  Development of Monoxenous Trypanosomatids and Phytomonads in Insects. , 2021, Trends in parasitology.

[2]  J. Lukeš,et al.  Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses , 2021, Open Biology.

[3]  J. Lukeš,et al.  Characterization of a new cosmopolitan genus of trypanosomatid parasites, Obscuromonas gen. nov. (Blastocrithidiinae subfam. nov.). , 2021, European journal of protistology.

[4]  S. English,et al.  Big Baby, Little Mother: Tsetse Flies Are Exceptions to the Juvenile Small Size Principle , 2020, BioEssays : news and reviews in molecular, cellular and developmental biology.

[5]  P. Kment,et al.  Endangered monoxenous trypanosomatid parasites: a lesson from island biogeography , 2020, Biodiversity and Conservation.

[6]  P. García-Palencia,et al.  Experimental evidence of harmful effects of Crithidia mellificae and Lotmaria passim on honey bees. , 2020, International journal for parasitology.

[7]  A. Horák,et al.  Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. , 2020, Environmental Microbiology.

[8]  C. Sugimoto,et al.  Blood meal sources and bacterial microbiome diversity in wild-caught tsetse flies , 2020, Scientific Reports.

[9]  J. Ježek,et al.  Horse flies (Diptera: Tabanidae) of three West African countries: a faunistic update, barcoding analysis and trypanosome occurrence. , 2019, Acta tropica.

[10]  P. Neumann,et al.  Trypanosomatid parasites infecting managed honeybees and wild solitary bees. , 2019, International journal for parasitology.

[11]  J. Reveillaud,et al.  The composition and abundance of bacterial communities residing in the gut of Glossina palpalis palpalis captured in two sites of southern Cameroon , 2019, Parasites & Vectors.

[12]  M. N. Malysheva,et al.  Crithidia dobrovolskii sp. n. (Kinetoplastida: Trypanosomatidae) from parasitoid fly Lypha dubia (Diptera: Tachinidae): morphology and phylogenetic position , 2019, Protistology.

[13]  H. Hashimi,et al.  Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree. , 2018, Trends in parasitology.

[14]  J. Votýpka,et al.  DNA of free-living bodonids (Euglenozoa: Kinetoplastea) in bat ectoparasites: potential relevance to the evolution of parasitic trypanosomatids. , 2017, Acta veterinaria Hungarica.

[15]  I. Goodhead,et al.  Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is present in both laboratory and natural populations , 2017, Scientific Reports.

[16]  M. Llewellyn,et al.  Small subunit ribosomal metabarcoding reveals extraordinary trypanosomatid diversity in Brazilian bats , 2017, PLoS neglected tropical diseases.

[17]  J. Lukeš,et al.  Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action , 2016, mBio.

[18]  J. Bouyer,et al.  Do tsetse flies only feed on blood? , 2015, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[19]  J. Lukeš,et al.  A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei. , 2015, International journal for parasitology.

[20]  B. Lemaître,et al.  Infection Dynamics and Immune Response in a Newly Described Drosophila-Trypanosomatid Association , 2015, mBio.

[21]  D. D. de Graaf,et al.  Characterization of Two Species of Trypanosomatidae from the Honey Bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. , 2015, The Journal of eukaryotic microbiology.

[22]  J. Lukeš,et al.  Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. , 2014, Protist.

[23]  J. Lukeš,et al.  Evolution of parasitism in kinetoplastid flagellates. , 2014, Molecular and biochemical parasitology.

[24]  J. Lukeš,et al.  Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. , 2014, Folia parasitologica.

[25]  I. Scoones The politics of trypanosomiasis control in Africa , 2014 .

[26]  S. Aksoy,et al.  Tsetse fly microbiota: form and function , 2013, Front. Cell. Infect. Microbiol..

[27]  J. Bouyer,et al.  Tsetse flies: their biology and control using area-wide integrated pest management approaches. , 2013, Journal of invertebrate pathology.

[28]  J. Lukeš,et al.  Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. , 2013, Trends in parasitology.

[29]  P. Kment,et al.  Phylogenetic relationships of trypanosomatids parasitising true bugs (Insecta: Heteroptera) in sub-Saharan Africa. , 2012, International journal for parasitology.

[30]  W. de Souza,et al.  Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. , 2011, Protist.

[31]  D. Steverding,et al.  The history of African trypanosomiasis , 2008, Parasites & Vectors.

[32]  D. Maslov,et al.  Trypanosomatid biodiversity in Costa Rica: genotyping of parasites from Heteroptera using the spliced leader RNA gene , 2004, Parasitology.

[33]  F. Pratlong,et al.  Leishmania, Trypanosoma and Monoxenous Trypanosomatids as Emerging Opportunistic Agents1 , 2000, The Journal of eukaryotic microbiology.

[34]  G. Schaub Pathogenicity of trypanosomatids on insects. , 1994, Parasitology today.

[35]  M. D'costa,et al.  Glycogen in the proventriculus of the tsetse fly. , 1973, Journal of insect physiology.

[36]  F. G. Wallace The trypanosomatid parasites of insects and arachnids. , 1966, Experimental parasitology.

[37]  J. Lipa 10 – Infections Caused by Protozoa Other Than Sporozoa , 1963 .

[38]  Franz Stuhlmann Beitrage zur Kenntnis der Tsetsefliege (Glossina fusca und Gl. tachinoides) , 1907 .