How monoxenous trypanosomatids revealed hidden feeding habits of their tsetse fly hosts.
暂无分享,去创建一个
[1] V. Yurchenko,et al. Development of Monoxenous Trypanosomatids and Phytomonads in Insects. , 2021, Trends in parasitology.
[2] J. Lukeš,et al. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses , 2021, Open Biology.
[3] J. Lukeš,et al. Characterization of a new cosmopolitan genus of trypanosomatid parasites, Obscuromonas gen. nov. (Blastocrithidiinae subfam. nov.). , 2021, European journal of protistology.
[4] S. English,et al. Big Baby, Little Mother: Tsetse Flies Are Exceptions to the Juvenile Small Size Principle , 2020, BioEssays : news and reviews in molecular, cellular and developmental biology.
[5] P. Kment,et al. Endangered monoxenous trypanosomatid parasites: a lesson from island biogeography , 2020, Biodiversity and Conservation.
[6] P. García-Palencia,et al. Experimental evidence of harmful effects of Crithidia mellificae and Lotmaria passim on honey bees. , 2020, International journal for parasitology.
[7] A. Horák,et al. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. , 2020, Environmental Microbiology.
[8] C. Sugimoto,et al. Blood meal sources and bacterial microbiome diversity in wild-caught tsetse flies , 2020, Scientific Reports.
[9] J. Ježek,et al. Horse flies (Diptera: Tabanidae) of three West African countries: a faunistic update, barcoding analysis and trypanosome occurrence. , 2019, Acta tropica.
[10] P. Neumann,et al. Trypanosomatid parasites infecting managed honeybees and wild solitary bees. , 2019, International journal for parasitology.
[11] J. Reveillaud,et al. The composition and abundance of bacterial communities residing in the gut of Glossina palpalis palpalis captured in two sites of southern Cameroon , 2019, Parasites & Vectors.
[12] M. N. Malysheva,et al. Crithidia dobrovolskii sp. n. (Kinetoplastida: Trypanosomatidae) from parasitoid fly Lypha dubia (Diptera: Tachinidae): morphology and phylogenetic position , 2019, Protistology.
[13] H. Hashimi,et al. Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree. , 2018, Trends in parasitology.
[14] J. Votýpka,et al. DNA of free-living bodonids (Euglenozoa: Kinetoplastea) in bat ectoparasites: potential relevance to the evolution of parasitic trypanosomatids. , 2017, Acta veterinaria Hungarica.
[15] I. Goodhead,et al. Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is present in both laboratory and natural populations , 2017, Scientific Reports.
[16] M. Llewellyn,et al. Small subunit ribosomal metabarcoding reveals extraordinary trypanosomatid diversity in Brazilian bats , 2017, PLoS neglected tropical diseases.
[17] J. Lukeš,et al. Novel Trypanosomatid-Bacterium Association: Evolution of Endosymbiosis in Action , 2016, mBio.
[18] J. Bouyer,et al. Do tsetse flies only feed on blood? , 2015, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.
[19] J. Lukeš,et al. A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei. , 2015, International journal for parasitology.
[20] B. Lemaître,et al. Infection Dynamics and Immune Response in a Newly Described Drosophila-Trypanosomatid Association , 2015, mBio.
[21] D. D. de Graaf,et al. Characterization of Two Species of Trypanosomatidae from the Honey Bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. , 2015, The Journal of eukaryotic microbiology.
[22] J. Lukeš,et al. Kentomonas gen. n., a new genus of endosymbiont-containing trypanosomatids of Strigomonadinae subfam. n. , 2014, Protist.
[23] J. Lukeš,et al. Evolution of parasitism in kinetoplastid flagellates. , 2014, Molecular and biochemical parasitology.
[24] J. Lukeš,et al. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. , 2014, Folia parasitologica.
[25] I. Scoones. The politics of trypanosomiasis control in Africa , 2014 .
[26] S. Aksoy,et al. Tsetse fly microbiota: form and function , 2013, Front. Cell. Infect. Microbiol..
[27] J. Bouyer,et al. Tsetse flies: their biology and control using area-wide integrated pest management approaches. , 2013, Journal of invertebrate pathology.
[28] J. Lukeš,et al. Diversity and phylogeny of insect trypanosomatids: all that is hidden shall be revealed. , 2013, Trends in parasitology.
[29] P. Kment,et al. Phylogenetic relationships of trypanosomatids parasitising true bugs (Insecta: Heteroptera) in sub-Saharan Africa. , 2012, International journal for parasitology.
[30] W. de Souza,et al. Phylogenetic validation of the genera Angomonas and Strigomonas of trypanosomatids harboring bacterial endosymbionts with the description of new species of trypanosomatids and of proteobacterial symbionts. , 2011, Protist.
[31] D. Steverding,et al. The history of African trypanosomiasis , 2008, Parasites & Vectors.
[32] D. Maslov,et al. Trypanosomatid biodiversity in Costa Rica: genotyping of parasites from Heteroptera using the spliced leader RNA gene , 2004, Parasitology.
[33] F. Pratlong,et al. Leishmania, Trypanosoma and Monoxenous Trypanosomatids as Emerging Opportunistic Agents1 , 2000, The Journal of eukaryotic microbiology.
[34] G. Schaub. Pathogenicity of trypanosomatids on insects. , 1994, Parasitology today.
[35] M. D'costa,et al. Glycogen in the proventriculus of the tsetse fly. , 1973, Journal of insect physiology.
[36] F. G. Wallace. The trypanosomatid parasites of insects and arachnids. , 1966, Experimental parasitology.
[37] J. Lipa. 10 – Infections Caused by Protozoa Other Than Sporozoa , 1963 .
[38] Franz Stuhlmann. Beitrage zur Kenntnis der Tsetsefliege (Glossina fusca und Gl. tachinoides) , 1907 .