Nonlinear Geometric Optics method based multi-scale numerical schemes for highly-oscillatory transport equations
暂无分享,去创建一个
[1] Moshe Gitterman,et al. Semiclassical Approximation to Quantum Mechanics , 2012 .
[2] G. MfiTIVIER. Coherent and focusing multidimensional nonlinear geometric optics , 2018 .
[3] Qian Niu,et al. Berry phase effects on electronic properties , 2009, 0907.2021.
[4] G. Hagedorn. Raising and Lowering Operators for Semiclassical Wave Packets , 1998 .
[5] Shi Jin. ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .
[6] A. Majda,et al. The validity of nonlinear geometric optics for weak solutions of conservation laws , 1985 .
[7] March,et al. Gaussian beams and the propagation of singularities , 2014 .
[8] P. Markowich,et al. On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime , 2002 .
[9] Xiaowei Jia,et al. A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Dirac Equation in the Nonrelativistic Limit Regime , 2015, SIAM J. Numer. Anal..
[10] Stanley Osher,et al. Numerical solution of the high frequency asymptotic expansion for the scalar wave equation , 1995 .
[11] Nicolas Crouseilles,et al. Asymptotic Preserving schemes for highly oscillatory Vlasov-Poisson equations , 2012, J. Comput. Phys..
[12] Jeffrey Rauch,et al. Hyperbolic Partial Differential Equations and Geometric Optics , 2012 .
[13] Qin Li,et al. A Multiband Semiclassical Model for Surface Hopping Quantum Dynamics , 2014, Multiscale Model. Simul..
[14] M. Popov. A new method of computation of wave fields using Gaussian beams , 1982 .
[15] H. Kreiss. Problems with different time scales for partial differential equations , 1980 .
[16] Chunxiong Zheng,et al. A time-splitting spectral scheme for the Maxwell-Dirac system , 2005, 1205.0368.
[17] E Weinan,et al. The heterogeneous multiscale method* , 2012, Acta Numerica.
[18] N. R. Hill,et al. Gaussian beam migration , 1990 .
[19] Nicolas Crouseilles,et al. Uniformly accurate numerical schemes for highly oscillatory Klein–Gordon and nonlinear Schrödinger equations , 2013, Numerische Mathematik.
[20] Christof Sparber,et al. Wigner functions versus WKB‐methods in multivalued geometrical optics , 2001 .
[21] Claudia Negulescu,et al. WKB-Based Schemes for the Oscillatory 1D Schrödinger Equation in the Semiclassical Limit , 2011, SIAM J. Numer. Anal..
[22] Shi Jin,et al. A hybrid Schrödinger/Gaussian beam solver for quantum barriers andsurface hopping , 2011 .
[23] Erwan Faou,et al. Computing Semiclassical Quantum Dynamics with Hagedorn Wavepackets , 2009, SIAM J. Sci. Comput..
[24] Weizhu Bao,et al. A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Klein-Gordon Equation in the Nonrelativistic Limit Regime , 2014, SIAM J. Numer. Anal..
[25] Christof Sparber,et al. Mathematical and computational methods for semiclassical Schrödinger equations* , 2011, Acta Numerica.
[26] Mathieu Colin,et al. Short Pulses Approximations in Dispersive Media , 2007, SIAM J. Math. Anal..
[27] Stanley Osher,et al. A level set method for the computation of multi-valued solutions to quasi-linear hyperbolic PDE's and Hamilton-Jacobi equations , 2003 .
[28] S. Osher,et al. A LEVEL SET METHOD FOR THE COMPUTATION OF MULTIVALUED SOLUTIONS TO QUASI-LINEAR HYPERBOLIC PDES AND HAMILTON-JACOBI EQUATIONS , 2003 .
[29] Shi Jin,et al. Multi-phase computations of the semiclassical limit of the Schrödinger equation and related problems: Whitham vs Wigner , 2003 .
[30] Eric J. Heller,et al. Frozen Gaussians: A very simple semiclassical approximation , 1981 .
[31] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[32] Jianfeng Lu,et al. Convergence of frozen Gaussian approximation for high‐frequency wave propagation , 2010, 1012.5055.
[33] Weizhu Bao,et al. Uniformly accurate multiscale time integrators for highly oscillatory second order differential equations , 2012, 1212.4939.
[34] Shi Jin,et al. Gaussian beam methods for the Schrodinger equation in the semi-classical regime: Lagrangian and Eulerian formulations , 2008 .
[35] O. Morandi,et al. Wigner model for quantum transport in graphene , 2011, 1102.2416.
[36] Shingyu Leung,et al. Eulerian Gaussian Beams for High Frequency Wave Propagation , 2007 .
[37] Andrew J. Majda,et al. Nonlinear Geometric Optics for Hyperbolic Systems of Conservation Laws , 1986 .
[38] Shi Jin,et al. Gaussian beam methods for the Schrödinger equation with discontinuous potentials , 2014, J. Comput. Appl. Math..
[39] B. Engquist,et al. Multi-phase computations in geometrical optics , 1996 .
[40] C. Cercignani. The Boltzmann equation and its applications , 1988 .
[41] P. Degond. Asymptotic-Preserving Schemes for Fluid Models of Plasmas , 2011, 1104.1869.
[42] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .