Fluorine Passivation Inhibits "Particle Talking" Behaviors under Thermal and Electrical Conditions of Pure Blue Mixed Halide Perovskite Nanocrystals.

Owing to outstanding optoelectronic properties, lead halide perovskite nanocrystals (PNCs) are considered promising emitters for next-generation displays. However, the development of pure blue (460-470 nm) perovskite nanocrystal light-emitting diodes (PNC-LEDs), which correspond to the requirements of Rec. 2020 standard, lag far behind that of their green and red counterparts. Here, pure blue CsPb(Br/Cl)3 nanocrystals with remarkable optical performance are demonstrated by a facile fluorine passivation strategy. Prominently, the fluorine passivation on halide vacancies and strong bonding of Pb-F intensely enhance crystal structure stability and inhibit "particle talking" behaviors under both thermal and electrical conditions. Fluorine-based PNCs with high resistance of luminescence thermal quenching retain 70% of photoluminescent intensity when heated to 343 K, which can be attributed to the elevated activation energy for carrier trapping and unchanged grain size. Fluorine-based PNC-LEDs also exhibit stable pure blue electroluminescence (EL) emission with sevenfold promoted luminance and external quantum efficiencies (EQEs), where the suppression of ion migration is further evidenced by a lateral structure device with applied polarizing potential.

[1]  Yanfeng Chen,et al.  Spectrally Stable Pure Red CsPbI3 Quantum Dots Light‐Emitting Diodes via Effective Low Temperature Gradient Centrifugation Separation and Surface Modification , 2023, Advanced Optical Materials.

[2]  Yan Liu,et al.  Highly bright and stable single-crystal perovskite light-emitting diodes , 2023, Nature Photonics.

[3]  D. Ginger,et al.  Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells , 2023, Science.

[4]  L. Li,et al.  Ultrathin Light-Emitting Diodes with External Efficiency over 26% Based on Resurfaced Perovskite Nanocrystals , 2023, ACS Energy Letters.

[5]  E. Sargent,et al.  Synthesis-on-substrate of quantum dot solids. , 2022, Nature.

[6]  Xiaojun Guo,et al.  Ultra-stable, Solution-Processable CsPbBr3-SiO2 Nanospheres for Highly Efficient Color Conversion in Micro Light-Emitting Diodes , 2022, ACS Energy Letters.

[7]  Qi Chen,et al.  Initializing film homogeneity to retard phase segregation for stable perovskite solar cells , 2022, Science.

[8]  Rashid Khan,et al.  Negligible ion migration in Tin-based and Tin-doped perovskites. , 2022, Angewandte Chemie.

[9]  Joo Sung Kim,et al.  Ultra-bright, efficient and stable perovskite light-emitting diodes , 2022, Nature.

[10]  Yue Wang,et al.  Surface Anchoring‐Induced Robust Luminescence Thermal Quenching Suppression in Shell‐Free Perovskite Nanocrystals , 2022, Advanced Optical Materials.

[11]  Chenghao Bi,et al.  All Solution‐Processed High Performance Pure‐Blue Perovskite Quantum‐Dot Light‐Emitting Diodes , 2022, Advanced Functional Materials.

[12]  Xinyi Mei,et al.  Approaching high-performance light-emitting devices upon perovskite quantum dots: Advances and prospects , 2022, Nano Today.

[13]  J. Luther,et al.  Overcoming Degradation Pathways to Achieve Stable Blue Perovskite Light-Emitting Diodes , 2022, ACS Energy Letters.

[14]  O. Voznyy,et al.  In Situ Inorganic Ligand Replenishment Enables Bandgap Stability in Mixed‐Halide Perovskite Quantum Dot Solids , 2022, Advanced materials.

[15]  X. W. Sun,et al.  Efficient CsPbBr3 Nanoplatelet-Based Blue Light-Emitting Diodes Enabled by Engineered Surface Ligands , 2022, ACS Energy Letters.

[16]  N. Zhao,et al.  Ion Migration in Perovskite Light‐Emitting Diodes: Mechanism, Characterizations, and Material and Device Engineering , 2021, Advanced materials.

[17]  Jianhua Zhang,et al.  Blue light-emitting diodes based on halide perovskites: Recent advances and strategies , 2021, Materials Today.

[18]  R. Friend,et al.  Efficient and Spectrally Stable Blue Perovskite Light‐Emitting Diodes Employing a Cationic π‐Conjugated Polymer , 2021, Advanced materials.

[19]  H. Yip,et al.  Color‐Stable Deep‐Blue Perovskite Light‐Emitting Diodes Based on Organotrichlorosilane Post‐Treatment , 2021, Advanced Functional Materials.

[20]  Y. Ping,et al.  Enhancing Defect Tolerance with Ligands at the Surface of Lead Halide Perovskites. , 2021, The journal of physical chemistry letters.

[21]  H. Zeng,et al.  Stabilizing electroluminescence color of blue perovskite LEDs via amine group doping. , 2021, Science bulletin.

[22]  Huamiao Wang,et al.  Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes , 2021, Nature Photonics.

[23]  Cathy Y. Wong,et al.  Ligand-engineered bandgap stability in mixed-halide perovskite LEDs , 2021, Nature.

[24]  Chenghao Bi,et al.  Perovskite Quantum Dots with Ultralow Trap Density by Acid Etching‐Driven Ligand Exchange for High Luminance and Stable Pure‐Blue Light‐Emitting Diodes , 2021, Advanced materials.

[25]  R. Friend,et al.  Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes , 2021 .

[26]  R. Friend,et al.  Mixed halide perovskites for spectrally stable and high-efficiency blue light-emitting diodes , 2021, Nature communications.

[27]  Xingyu Gao,et al.  Interfacial Potassium‐Guided Grain Growth for Efficient Deep‐Blue Perovskite Light‐Emitting Diodes , 2020, Advanced Functional Materials.

[28]  E. Kumacheva,et al.  Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots , 2020, Nature Nanotechnology.

[29]  Zhenghong Lu,et al.  Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes , 2020, ACS Energy Letters.

[30]  F. So,et al.  Operational stability of perovskite light emitting diodes , 2020, Journal of Physics: Materials.

[31]  Weizhuo Zhang,et al.  Efficient and Spectrally Stable Blue Perovskite Light‐Emitting Diodes Based on Potassium Passivated Nanocrystals , 2020, Advanced Functional Materials.

[32]  M. Kovalenko,et al.  Direct Synthesis of Quaternary Alkylammonium-Capped Perovskite Nanocrystals for Efficient Blue and Green Light-Emitting Diodes , 2019, ACS energy letters.

[33]  Liang Li,et al.  Surface Ligand Engineering toward Brightly Luminescent and Stable Cesium Lead Halide Perovskite Nanoplatelets for Efficient Blue-Light-Emitting Diodes , 2019, The Journal of Physical Chemistry C.

[34]  Dawei Di,et al.  Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures , 2019, Nature Photonics.

[35]  G. Rainò,et al.  Engineering Color-Stable Blue Light-Emitting Diodes with Lead Halide Perovskite Nanocrystals. , 2019, ACS applied materials & interfaces.

[36]  Jun Chen,et al.  Spectra stable blue perovskite light-emitting diodes , 2019, Nature Communications.

[37]  K. Uvdal,et al.  Rational molecular passivation for high-performance perovskite light-emitting diodes , 2019, Nature Photonics.

[38]  E. Mosconi,et al.  Formation of Surface Defects Dominates Ion Migration in Lead-Halide Perovskites , 2019, ACS Energy Letters.

[39]  Q. Quan,et al.  Efficient Blue and White Perovskite Light-Emitting Diodes via Manganese Doping , 2018, Joule.

[40]  J. Kido,et al.  Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices , 2018, Nature Photonics.

[41]  Yizheng Jin,et al.  Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures , 2018, Nature.

[42]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[43]  Liang Gao,et al.  Color-stable highly luminescent sky-blue perovskite light-emitting diodes , 2018, Nature Communications.

[44]  H. Zeng,et al.  In Situ Passivation of PbBr64– Octahedra toward Blue Luminescent CsPbBr3 Nanoplatelets with Near 100% Absolute Quantum Yield , 2018, ACS Energy Letters.

[45]  O. Bakr,et al.  Doping-Enhanced Short-Range Order of Perovskite Nanocrystals for Near-Unity Violet Luminescence Quantum Yield. , 2018, Journal of the American Chemical Society.

[46]  Peng Gao,et al.  High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes , 2018, 1804.09785.

[47]  Youngsik Kim,et al.  Highly Stable Cesium Lead Halide Perovskite Nanocrystals through in Situ Lead Halide Inorganic Passivation , 2017 .

[48]  J. E. Halpert,et al.  Field-Driven Ion Migration and Color Instability in Red-Emitting Mixed Halide Perovskite Nanocrystal Light-Emitting Diodes , 2017 .

[49]  Dong Suk Kim,et al.  High-Temperature-Short-Time Annealing Process for High-Performance Large-Area Perovskite Solar Cells. , 2017, ACS nano.

[50]  Qingsong Shan,et al.  50‐Fold EQE Improvement up to 6.27% of Solution‐Processed All‐Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control , 2017, Advanced materials.

[51]  Oleksandr Voznyy,et al.  Highly Efficient Perovskite‐Quantum‐Dot Light‐Emitting Diodes by Surface Engineering , 2016, Advanced materials.

[52]  Richard H. Friend,et al.  Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes , 2015, Science.

[53]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.