Experimental comparison of some phenomenological hysteresis models in characterizing hysteresis behavior of shape memory alloy actuators
暂无分享,去创建一个
[1] C. Su,et al. An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.
[2] H. Sayyaadi,et al. Modeling of a Nonlinear Euler-Bernoulli Flexible Beam Actuated by Two Active Shape Memory Alloy Actuators , 2011 .
[3] Saeed Bagheri Shouraki,et al. Hysteresis Nonlinearity Identification Using New Preisach Model-Based Artificial Neural Network Approach , 2011, J. Appl. Math..
[4] Ying Feng,et al. Hysteresis compensation for smart actuators using inverse generalized Prandtl-Ishlinskii model , 2009, 2009 American Control Conference.
[5] Chun-Yi Su,et al. A generalized Prandtl–Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators , 2009 .
[6] Xiaobo Tan,et al. Modeling and control of hysteresis , 2009 .
[7] Chun-Yi Su,et al. Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators , 2008 .
[8] Kyoung Kwan Ahn,et al. Modeling and control of shape memory alloy actuators using Preisach model, genetic algorithm and fuzzy logic , 2008 .
[9] A. Kurdila,et al. Identification of Preisach-Type Hysteresis Operators , 2008 .
[10] Carlo Paolo Sasso,et al. Thermodynamic aspects of first-order phase transformations with hysteresis in magnetic materials , 2007 .
[11] Saeid Bashash,et al. Robust Multiple Frequency Trajectory Tracking Control of Piezoelectrically Driven Micro/Nanopositioning Systems , 2007, IEEE Transactions on Control Systems Technology.
[12] A. Binner,et al. Determination of distribution functions and parameters for the Preisach hysteresis model , 2006, 2006 17th International Zurich Symposium on Electromagnetic Compatibility.
[13] C. Visone,et al. “Moving” Prandtl–Ishilinskii operators with compensator in a closed form , 2006 .
[14] Chun-Yi Su,et al. On the Control of Plants with Hysteresis: Overview and a Prandtl-Ishlinskii Hysteresis Based Control Approach , 2005 .
[15] Qingxin Yang,et al. Optimization of hysteresis parameters for the Jiles-Atherton model using a genetic algorithm , 2004 .
[16] N. Sadowski,et al. Real coded genetic algorithm for Jiles-Atherton model parameters identification , 2004, IEEE Transactions on Magnetics.
[17] R. Ben Mrad,et al. On the classical Preisach model for hysteresis in piezoceramic actuators , 2003 .
[18] Pol D. Spanos,et al. A Preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys , 2001 .
[19] Nagi G. Naganathan,et al. Preisach Modeling of Hysteresis for Piezoceramic Actuator System , 2001 .
[20] Chia-Hsiang Menq,et al. Hysteresis compensation in electromagnetic actuators through Preisach model inversion , 2000 .
[21] Hartmut Janocha,et al. Real-time compensation of hysteresis and creep in piezoelectric actuators , 2000 .
[22] D. Lagoudas,et al. Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .
[23] A. Kurdila,et al. Hysteresis Modeling of SMA Actuators for Control Applications , 1998 .
[24] David W. L. Wang,et al. Preisach model identification of a two-wire SMA actuator , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).
[25] A. J. Kurdila,et al. IDENTIFICATION AND ADAPTIVE CONTROL FOR A CLASS OF HYSTERESIS OPERATORS , 1997 .
[26] M. Brokate,et al. Hysteresis and Phase Transitions , 1996 .
[27] L. Dupré,et al. Comparison of Jiles and Preisach hysteresis models in magnetodynamics , 1995 .
[28] J. Wen,et al. Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1995, Proceedings of International Conference on Control Applications.
[29] M. Krasnosel’skiǐ,et al. Systems with Hysteresis , 1989 .
[30] Mayergoyz,et al. Mathematical models of hysteresis. , 1986, Physical review letters.
[31] F. Preisach. Über die magnetische Nachwirkung , 1935 .
[32] Yu Feng Wang,et al. Methods for modeling and control of systems with hysteresis of shape memory alloy actuators , 2006 .
[33] Wei Zhang. MODELING AND CONTROL OF MAGNETOSTRICTIVE ACTUATORS , 2005 .
[34] János Füzi,et al. Identification procedures for scalar Preisach model , 2004 .
[35] Klaus Kuhnen,et al. Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.
[36] Harvey Thomas Banks,et al. Identification of Hysteretic Control Influence Operators Representing Smart Actuators Part I: Formulation , 1997 .
[37] Rob Gorbet,et al. Control of hysteretic systems with Preisach representations , 1997 .
[38] A. Visintin. Differential models of hysteresis , 1994 .
[39] M. Matsumoto. Shape memory alloys. , 1988 .
[40] I. Mayergoyz,et al. Generalized Preisach model of hysteresis , 1988 .