Experimental comparison of some phenomenological hysteresis models in characterizing hysteresis behavior of shape memory alloy actuators

Among the phenomenological hysteresis models, the Preisach model, Krasnosel’skii–Pokrovskii model, and Prandtl–Ishlinskii model have found extensive applications for modeling hysteresis in shape memory alloys and other smart actuators. Since the mathematical complexity of the identification and inversion problem depends directly on the type of phenomenological hysteresis modeling method, choosing a proper phenomenological model among the mentioned models for modeling the hysteretic behavior of shape memory alloy actuators is a task of crucial importance. Moreover, the accuracy of the hysteresis modeling method in characterizing shape memory alloy hysteretic behavior consequently affects the whole compensator design task. In this article, the accuracy of the mentioned phenomenological models in characterizing and predicting the hysteretic behavior of shape memory alloy actuators is experimentally compared. It will be shown that although, unlike the Preisach and Krasnosel’skii–Pokrovskii models, the identification process of the Prandtl–Ishlinskii model is a time-consuming process, it leads to the best results when the outputs of these models are compared with the experimental data. Since the Prandtl–Ishlinskii model is also analytically invertible and can be easily implemented as a feed-forward controller for compensating the hysteretic nonlinearity behavior of shape memory alloy actuators, it seems to be the best model for modeling and compensating the hysteretic behavior of shape memory alloy actuators.

[1]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[2]  H. Sayyaadi,et al.  Modeling of a Nonlinear Euler-Bernoulli Flexible Beam Actuated by Two Active Shape Memory Alloy Actuators , 2011 .

[3]  Saeed Bagheri Shouraki,et al.  Hysteresis Nonlinearity Identification Using New Preisach Model-Based Artificial Neural Network Approach , 2011, J. Appl. Math..

[4]  Ying Feng,et al.  Hysteresis compensation for smart actuators using inverse generalized Prandtl-Ishlinskii model , 2009, 2009 American Control Conference.

[5]  Chun-Yi Su,et al.  A generalized Prandtl–Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators , 2009 .

[6]  Xiaobo Tan,et al.  Modeling and control of hysteresis , 2009 .

[7]  Chun-Yi Su,et al.  Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators , 2008 .

[8]  Kyoung Kwan Ahn,et al.  Modeling and control of shape memory alloy actuators using Preisach model, genetic algorithm and fuzzy logic , 2008 .

[9]  A. Kurdila,et al.  Identification of Preisach-Type Hysteresis Operators , 2008 .

[10]  Carlo Paolo Sasso,et al.  Thermodynamic aspects of first-order phase transformations with hysteresis in magnetic materials , 2007 .

[11]  Saeid Bashash,et al.  Robust Multiple Frequency Trajectory Tracking Control of Piezoelectrically Driven Micro/Nanopositioning Systems , 2007, IEEE Transactions on Control Systems Technology.

[12]  A. Binner,et al.  Determination of distribution functions and parameters for the Preisach hysteresis model , 2006, 2006 17th International Zurich Symposium on Electromagnetic Compatibility.

[13]  C. Visone,et al.  “Moving” Prandtl–Ishilinskii operators with compensator in a closed form , 2006 .

[14]  Chun-Yi Su,et al.  On the Control of Plants with Hysteresis: Overview and a Prandtl-Ishlinskii Hysteresis Based Control Approach , 2005 .

[15]  Qingxin Yang,et al.  Optimization of hysteresis parameters for the Jiles-Atherton model using a genetic algorithm , 2004 .

[16]  N. Sadowski,et al.  Real coded genetic algorithm for Jiles-Atherton model parameters identification , 2004, IEEE Transactions on Magnetics.

[17]  R. Ben Mrad,et al.  On the classical Preisach model for hysteresis in piezoceramic actuators , 2003 .

[18]  Pol D. Spanos,et al.  A Preisach model identification procedure and simulation of hysteresis in ferromagnets and shape-memory alloys , 2001 .

[19]  Nagi G. Naganathan,et al.  Preisach Modeling of Hysteresis for Piezoceramic Actuator System , 2001 .

[20]  Chia-Hsiang Menq,et al.  Hysteresis compensation in electromagnetic actuators through Preisach model inversion , 2000 .

[21]  Hartmut Janocha,et al.  Real-time compensation of hysteresis and creep in piezoelectric actuators , 2000 .

[22]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[23]  A. Kurdila,et al.  Hysteresis Modeling of SMA Actuators for Control Applications , 1998 .

[24]  David W. L. Wang,et al.  Preisach model identification of a two-wire SMA actuator , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[25]  A. J. Kurdila,et al.  IDENTIFICATION AND ADAPTIVE CONTROL FOR A CLASS OF HYSTERESIS OPERATORS , 1997 .

[26]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[27]  L. Dupré,et al.  Comparison of Jiles and Preisach hysteresis models in magnetodynamics , 1995 .

[28]  J. Wen,et al.  Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1995, Proceedings of International Conference on Control Applications.

[29]  M. Krasnosel’skiǐ,et al.  Systems with Hysteresis , 1989 .

[30]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[31]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[32]  Yu Feng Wang,et al.  Methods for modeling and control of systems with hysteresis of shape memory alloy actuators , 2006 .

[33]  Wei Zhang MODELING AND CONTROL OF MAGNETOSTRICTIVE ACTUATORS , 2005 .

[34]  János Füzi,et al.  Identification procedures for scalar Preisach model , 2004 .

[35]  Klaus Kuhnen,et al.  Modeling, Identification and Compensation of Complex Hysteretic Nonlinearities: A Modified Prandtl - Ishlinskii Approach , 2003, Eur. J. Control.

[36]  Harvey Thomas Banks,et al.  Identification of Hysteretic Control Influence Operators Representing Smart Actuators Part I: Formulation , 1997 .

[37]  Rob Gorbet,et al.  Control of hysteretic systems with Preisach representations , 1997 .

[38]  A. Visintin Differential models of hysteresis , 1994 .

[39]  M. Matsumoto Shape memory alloys. , 1988 .

[40]  I. Mayergoyz,et al.  Generalized Preisach model of hysteresis , 1988 .