FIRST RESULTS FROM HIGH ANGULAR RESOLUTION ALMA OBSERVATIO NS TOWARD THE HL TAU REGION

We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0. ′′ 075 (10 AU) to 0. ′′ 025 (3.5 AU), revealing an astonishing level of detail in the cir cumstellar disk surrounding the young solar analogue HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46.72 ◦ ± 0.05 ◦ ) and position angle (+138.02 ◦ ± 0.07 ◦ ). We obtain a high-fidelity image of the 1.0 mm spectral index (�), which ranges from � � 2.0 in the optically-thick central peak and two brightest ring s, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, and we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for subsequent dark rings, consistent with some degree of grain growth and evolution. Additional clues that the rings arise from planet formation incl ude an increase in their central offsets with radius and the presence of numerous orbital resonances. At a resolution of 35 AU, we resolve the molecular component of the disk in HCO + (1-0) which exhibits a pattern over LSR velocities from 2-12 km s -1 consistent with Keplerian motion around a �1.3M⊙ star, although complicated by absorption at low blue-shifted velocities. We also serendipitously detect and resolve the nearby protost ars XZ Tau (A/B) and LkH�358 at 2.9 mm. Subject headings: stars: individual (HL Tau, XZ Tau, LkH�358) — protoplanetary disks — stars: formation — submillimeter: planetary systems — techniques: interferometric

European Southern Observatory | D. Broguiere | E. Liuzzo | B. Nikolic | Chile | D. Barkats | Canada | UK | National Radio Astronomy Observatory | USA | Germany | France | P. Andreani | T. Sawada | Astrophysics | University of Manchester | E. Villard | I. de Gregorio-Monsalvo | L. Testi | D. Garcia-Appadoo | L. Guzman-Ramirez | R. P. J. Tilanus | J. Gallardo | Canada. | Institute of Astronomy | Italy | R. Aladro | Taiwan | Japan | T. R. Hunter | A. Kawamura | Leiden University | Jodrell Bank Centre for Astrophysics | Charlottesville | T. Kaminski | K. Plarre | M. Radiszcz | D. Espada | Korea | C. L. Brogan | K. Saigo | V. Pietu | E. Chapillon | IRAM | E. Akiyama | S. Matsushita | A. Castro-Carrizo | C. M. V. Impellizzeri | P. Sanhueza | T. Wiklind | Cavendish Laboratory | L. Videla | T. Hill | The Netherlands | H Germany | France. | Usa | UK. | Italy. | Japan. | I. O. Astronomy | J Korea | J. Hodge | N. R. A. Observatory | Socorro | E. Observatory | L. Testi | C. Brogan | J. Hibbard | T. Wiklind | K. Plarre | Leiden University | S. S. Institute | S. Kameno | E. Chapillon | N. Marcelino | E. Fomalont | R. Kneissl | A. Hales | R. Hills | A. Hirota | N. Phillips | T. Sawada | I. Gregorio-Monsalvo | S. Corder | J. Francesco | C. Laboratory | R. Tilanus | A. Kawamura | H. Francke | Chile. | U. Manchester | The Netherlands. | T. Hunter | W. Dent | G. Schieven | P. Andreani | L. Nyman | C. Vlahakis | P. Cortés | D. Broguière | T. Jung | E. Liuzzo | S. Matsushita | V. Piétu | F. Gueth | C. Impellizzeri | R. Laing | D. Barkats | Bologna | P. Sanhueza | T. Hill | Q. N. Luong | J. Rodon | T. Kamiński | D. Garcia-Appadoo | A. Partnership | Y. Asaki | R. Lucas | A. Richards | I. Toledo | R. Aladro | J. Cortés | D. Espada | F. Galarza | L. Guzman-Ramirez | E. Humphreys | S. Leon | G. Marconi | A. Mignano | B. Nikolić | M. Radiszcz | A. Remijan | S. Takahashi | B. V. Vilaro | L. Watson | J. Mangum | A. Wootten | J. Gallardo | J. Garcia | S. Gonzalez | Y. Kurono | C. López | F. Morales | L. Videla | E. Villard | K. Observatory | Iram | A. Sinica | National Space Development Agency of Japan | I. O. Space | Astronautical Science | Japan Aerospace Exploration Agency | A. Group | Istituto di Radioastronomia | Institut de Plan'etologie et d'Astrophysique de Grenoble | J. B. C. F. Astrophysics | Korea Astronomy | L. Observatory | National Research Council Herzberg AstronomyAstrophysics | K. Nakanishi | T. V. Kempen | K. Saigo | E. Akiyama | R. Kneissl | S. Leon | Astronautical Science | L. C. Watson | R. Lucas | Academia Sinica | A. S. Hales | N. Marcelino | N. Phillips | I. Toledo | J. R. Cortes | F. Galarza | A. Mignano | B. Vila Vilaro | J. Di Francesco | Q. Nguyen Luong | C. Ubach | H. Francke | J. Garcia | S. Gonzalez | C. Lopez | F. Morales | G. Schieven | Institute of Space | Astrophysics Group | Space Science Institute | C. Vlahakis | A. Hirota | R. A. Laing | S. Takakuwa | F. Gueth | Korea Astronomy | A. Castro-Carrizo | Joint ALMA Observatory | G. Marconi | L. Pérez | C-F. Lee | C. Ubach | H.-Y. Liu | Joint Alma Observatory | E. B. Fomalont | W. R. F. Dent | A. M. S. Richards | R. Hills | Leiden Observatory | T. Jung | National Astronomical Observatory of Japan | ALMA Partnership | L. M. Perez | S. Corder | Y. Asaki | J. A. Hodge | K. Nakanishi | P. C. Cortes | E. M. Humphreys | S. Kameno | L. -A. Nyman | A. Remijan | J. A. Rodon | S. Takahashi | C.-F. Lee | J. Mangum | S. Takakuwa | T. van Kempen | A. Wootten | Y. Kurono | H.-Y. Liu | J. E. Hibbard | K. Tatematsu National Radio Astronomy Observatory | Institut de Planetologie et d'Astrophysique de Grenoble | D. Broguiere | S. Léon | C.-F. Lee | Cavendish Laboratory | B. Nikolic | A. Richards | Usa

[1]  S. Beckwith,et al.  The molecular structure around HL Tauri , 1991 .

[2]  Steven V. W. Beckwith,et al.  Particle Emissivity in Circumstellar Disks , 1991 .

[3]  L. Hartmann,et al.  Pre-Main-Sequence Evolution in the Taurus-Auriga Molecular Cloud , 1995 .

[4]  John E. Krist,et al.  WFPC2 Imaging of the Circumstellar Nebulosity of HL Tauri , 1995 .

[5]  D. Wilner,et al.  Subarcsecond VLA Observations of HL Tauri: Imaging the Circumstellar Disk , 1996 .

[6]  L. Mundy,et al.  Imaging the HL Tauri Disk at λ = 2.7 Millimeters with the BIMA Array , 1996 .

[7]  Laird M. Close,et al.  Adaptive Optics Infrared Imaging Polarimetry and Optical HST Imaging of Hubble's Variable Nebula (R Monocerotis/NGC 2261): A Close Look at a Very Young Active Herbig Ae/Be Star , 1997 .

[8]  John E. Carlstrom,et al.  Constraints on the HL Tauri Protostellar Disk from Millimeter- and Submillimeter-Wave Interferometry , 1997 .

[9]  P. Goldreich,et al.  Spectral Energy Distributions of T Tauri Stars with Passive Circumstellar Disks , 1997, astro-ph/9706042.

[10]  T. Henning,et al.  Self-consistent Model of the Dusty Torus around HL Tauri , 1999 .

[11]  Lee G. Mundy,et al.  Unveiling the Circumstellar Envelope and Disk: A Subarcsecond Survey of Circumstellar Structures , 1999, astro-ph/9908301.

[12]  Resolving Molecular Line Emission from Protoplanetary Disks: Observational Prospects for Disks Irradiated by Infalling Envelopes , 1999, astro-ph/9912052.

[13]  L. Hartmann,et al.  High-Resolution, Wide-Field Imaging of the HL Tauri Environment in 13CO (1-0) , 2000 .

[14]  L. Hartmann,et al.  The Initial Mass Function in the Taurus Star-forming Region , 2002 .

[15]  M. Tamura,et al.  Investigation of the Physical Properties of Protoplanetary Disks around T Tauri Stars by a 1 Arcsecond Imaging Survey: Evolution and Diversity of the Disks in Their Accretion Stage , 2002 .

[16]  Lynne Hillenbrand,et al.  On the Evolutionary Status of Class I Stars and Herbig-Haro Energy Sources in Taurus-Auriga , 2004 .

[17]  L. Rebull,et al.  Stellar Rotation in Young Clusters: The First 4 Million Years , 2004 .

[18]  Jonathan P. Williams,et al.  Circumstellar Dust Disks in Taurus-Auriga: The Submillimeter Perspective , 2005, astro-ph/0506187.

[19]  M. Hayashi,et al.  Adaptive Optics Spectroscopy of the [Fe II] Outflows from HL Tauri and RW Aurigae , 2006, astro-ph/0606605.

[20]  R. Indebetouw,et al.  Interpreting Spectral Energy Distributions from Young Stellar Objects. II. Fitting Observed SEDs Using a Large Grid of Precomputed Models , 2006, astro-ph/0612690.

[21]  Th. Henning,et al.  Large dust particles in disks around T Tauri stars , 2006 .

[22]  J. Bally,et al.  Multigenerational Star Formation in L1551 , 2005, astro-ph/0512351.

[23]  C. G. Tinney,et al.  Catalog of nearby exoplanets , 2006 .

[24]  Proper Motions of the Jets in the Region of HH 30 and HL/XZ Tau. Evidence for a Binary Exciting Source of the HH 30 Jet , 2007, astro-ph/0703155.

[25]  P. Mcgregor,et al.  A Micro-Molecular Bipolar Outflow from HL Tauri , 2007, 0710.1148.

[26]  W. Rice,et al.  Enhanced dust emission in the HL Tau disc: a low‐mass companion in formation? , 2008, 0809.4151.

[27]  J. Krist,et al.  A MULTI-EPOCH HST STUDY OF THE HERBIG–HARO FLOW FROM XZ TAURI , 2008, 0809.2073.

[28]  Tim J. Cornwell,et al.  Multiscale CLEAN Deconvolution of Radio Synthesis Images , 2008, IEEE Journal of Selected Topics in Signal Processing.

[29]  Edwin L. Turner,et al.  APJ IN PRESS Preprint typeset using LATEX style emulateapj v. 10/09/06 ON THE ECCENTRICITY DISTRIBUTION OF EXOPLANETS FROM RADIAL VELOCITY SURVEYS , 2022 .

[30]  G. Anglada,et al.  HIGH ANGULAR RESOLUTION RADIO OBSERVATIONS OF THE HL/XZ TAU REGION: MAPPING THE 50 AU PROTOPLANETARY DISK AROUND HL TAU AND RESOLVING XZ TAU S INTO A 13 AU BINARY , 2009, 0901.3744.

[31]  G. Schaefer,et al.  A MILLIMETER-WAVE INTERFEROMETRIC STUDY OF DUST AND CO DISKS AROUND LATE SPECTRAL TYPE STARS IN TAURUS-AURIGA , 2009 .

[32]  J. Bjorkman,et al.  DID FOMALHAUT, HR 8799, AND HL TAURI FORM PLANETS VIA THE GRAVITATIONAL INSTABILITY? PLACING LIMITS ON THE REQUIRED DISK MASSES , 2009, 0908.1108.

[33]  P. Mcgregor,et al.  SPATIALLY EXTENDED BRACKETT GAMMA EMISSION IN THE ENVIRONMENTS OF YOUNG STARS , 2010, 1008.4101.

[34]  E. Schilbach,et al.  THE PPMXL CATALOG OF POSITIONS AND PROPER MOTIONS ON THE ICRS. COMBINING USNO-B1.0 AND THE TWO MICRON ALL SKY SURVEY (2MASS) , 2010, 1003.5852.

[35]  A. Dutrey,et al.  A dual-frequency sub-arcsecond study of proto-planetary disks at mm wavelengths: first evidence for radial variations of the dust properties , 2011 .

[36]  L. Mundy,et al.  RESOLVING THE CIRCUMSTELLAR DISK OF HL TAURI AT MILLIMETER WAVELENGTHS , 2011, 1107.5275.

[37]  Jon M. Jenkins,et al.  ARCHITECTURE AND DYNAMICS OF KEPLER'S CANDIDATE MULTIPLE TRANSITING PLANET SYSTEMS , 2011, 1102.0543.

[38]  T. Cornwell,et al.  A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry , 2011, 1106.2745.

[39]  L. Mundy,et al.  CONSTRAINTS ON THE RADIAL VARIATION OF GRAIN GROWTH IN THE AS 209 CIRCUMSTELLAR DISK , 2012, 1210.5252.

[40]  J. Papaloizou,et al.  DISK–PLANETS INTERACTIONS AND THE DIVERSITY OF PERIOD RATIOS IN KEPLER'S MULTI-PLANETARY SYSTEMS , 2013, 1301.0779.

[41]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[42]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[43]  D. Lin,et al.  RESONANCES OF MULTIPLE EXOPLANETS AND IMPLICATIONS FOR THEIR FORMATION , 2014, 1406.6700.

[44]  Ruobing Dong,et al.  Observational Signatures of Planets in Protoplanetary Disks I: Gaps Opened by Single and Multiple Young Planets in Disks , 2014, 1411.6063.

[45]  L. Mundy,et al.  Spatially resolved magnetic field structure in the disk of a T Tauri star , 2014, Nature.

[46]  L. Zapata,et al.  SMA SUBMILLIMETER OBSERVATIONS OF HL Tau: REVEALING A COMPACT MOLECULAR OUTFLOW , 2014, 1401.0455.

[47]  T. C. Caetano,et al.  Proper motions of the optically visible open clusters based on the UCAC4 catalog , 2014 .

[48]  D. Forgan,et al.  Triple trouble for XZ Tau: deep imaging with the Jansky Very Large Array , 2014, 1402.2103.

[49]  Krzysztof Gozdziewski,et al.  Multiple mean motion resonances in the HR 8799 planetary system , 2013, 1308.6462.