Architecture of growth basins in a tidally influenced, prodelta to delta‐front setting: The Triassic succession of Kvalpynten, East Svalbard

World‐class examples of fault‐controlled growth basins with associated syn‐kinematic sedimentary fill are developed in Upper Triassic prodelta to delta‐front deposits exposed at Kvalpynten, SW Edgeøya in East Svalbard. They are interpreted to have interacted with north‐westerly progradation of a regional delta system. The syn‐kinematic successions consist of 4 to 5 coarsening‐upward units spanning from offshore mudstones to subtidal heterolithic bars and compound tidal dunes, which were blanketed by regional, post‐kinematic sandstone sheets deposited as laterally continuous, subaqueous tidal dune fields. The rate of growth faulting is reflected in the distribution of accommodation, which governs sedimentary architecture and stacking patterns within the coarsening‐upward units. Fully compartmentalized basins (12, 200–800 m wide and c. 150 m high grabens and half grabens) are characterized by syn‐kinematic sedimentary infill. These grabens and half‐grabens are separated by 60–150 m high horsts composed of pro‐delta to distal delta‐front mudstones. Grabens host tabular tidal dunes (sandwaves), whereas half‐grabens bound by listric faults (mainly south‐dipping) consist of wedge‐shaped, rotated strata with erosive boundaries proximal to the uplifted fault block crests. Heterolithic tidal bars (sand ridges) occur in narrow half‐grabens, showing migration oblique to the faults, up the dipslope. Structureless sandstone wedges and localized subaqueous slumps that formed in response to collapse of the block crests were only documented in half‐grabens. Late‐kinematic deposition during the final stages of faulting occurred in partly compartmentalized basins, filled with variably thick sets of continuous sandstone belts (compound tidal dunes).

[1]  A. Braathen,et al.  Extensional fault and fold growth: Impact on accommodation evolution and sedimentary infill , 2019, Basin Research.

[2]  John A. Howell,et al.  LIME: Software for 3-D visualization, interpretation, and communication of virtual geoscience models , 2019, Geosphere.

[3]  A. Braathen,et al.  Sedimentary architecture during Carboniferous rift initiation – the arid Billefjorden Trough, Svalbard , 2018, Journal of the Geological Society.

[4]  K. Senger,et al.  Facies, palynostratigraphy and sequence stratigraphy of the Wilhelmøya Subgroup (Upper Triassic–Middle Jurassic) in western central Spitsbergen, Svalbard , 2018, Norwegian Journal of Geology.

[5]  A. Braathen,et al.  Impacts of small-scale faults on continental to coastal plain deposition: Evidence from the Realgrunnen Subgroup in the Goliat field, southwest Barents Sea, Norway , 2018, Marine and Petroleum Geology.

[6]  A. Braathen,et al.  Growth‐faults from delta collapse – structural and sedimentological investigation of the Last Chance delta, Ferron Sandstone, Utah , 2018 .

[7]  S. Olaussen,et al.  Clinoform development and topset evolution in a mud‐rich delta – the Middle Triassic Kobbe Formation, Norwegian Barents Sea , 2018 .

[8]  K. Ogata,et al.  Architecture, deformation style and petrophysical properties of growth fault systems: the Late Triassic deltaic succession of southern Edgeøya (East Svalbard) , 2018 .

[9]  K. Senger,et al.  Integrating subsurface and outcrop data of the Middle Jurassic to Lower Cretaceous Agardhfjellet Formation in central Spitsbergen , 2018 .

[10]  G. Price,et al.  An improved model for the ikaite-glendonite transformation: evidence from the Lower Cretaceous of Spitsbergen, Svalbard , 2018 .

[11]  A. Braathen,et al.  The Keisarhjelmen detachment records Silurian–Devonian extensional collapse in Northern Svalbard , 2018 .

[12]  Hansen,et al.  Linking an Early Triassic delta to antecedent topography: Source-to-sink study of the southwestern Barents Sea margin , 2018 .

[13]  Kelai Xi,et al.  How are diagenesis and reservoir quality linked to depositional facies? A deltaic succession, Edgeøya, Svalbard , 2017 .

[14]  R. Dalrymple,et al.  Interplay of tidal and fluvial processes in an early Pleistocene, delta-fed, strait margin (Calabria, Southern Italy) , 2017 .

[15]  A. Braathen,et al.  Jurassic to Early Cretaceous basin configuration(s) in the Fingerdjupet Subbasin, SW Barents Sea , 2017 .

[16]  S. Olaussen,et al.  The Lower Cretaceous succession of the northwestern Barents Shelf: Onshore and offshore correlations , 2017 .

[17]  A. Braathen,et al.  A 3D structural analysis of the Goliat field, Barents Sea, Norway , 2017 .

[18]  M. Scheck‐Wenderoth,et al.  Tectonic implications of the lithospheric structure across the Barents and Kara shelves , 2017, Special Publications.

[19]  G. Lord,et al.  Facies development of the Upper Triassic succession on Barentsøya, Wilhelmøya and NE Spitsbergen, Svalbard , 2017 .

[20]  S. Olaussen,et al.  Sedimentology of the Lower Cretaceous at Kikutodden and Keilhaufjellet, southern Spitsbergen: implications for an onshore–offshore link , 2017 .

[21]  H. Fossen,et al.  Interaction between gravity-driven listric normal fault linkage and their hanging-wall rollover development: a case study from the western Niger Delta, Nigeria , 2016, Special Publications.

[22]  P. Passalacqua,et al.  Impact of tidal currents on delta-channel deepening, stratigraphic architecture, and sediment bypass beyond the shoreline , 2016 .

[23]  A. Rotevatn,et al.  Supra-salt normal fault growth during the rise and fall of a diapir: Perspectives from 3D seismic reflection data, Norwegian North Sea , 2016 .

[24]  Jim H. Chandler,et al.  Structure from motion (SFM) photogrammetry vs terrestrial laser scanning , 2016 .

[25]  R. Steel,et al.  The role of tidal, wave and river currents in the evolution of mixed‐energy deltas: Example from the Lajas Formation (Argentina) , 2016 .

[26]  A. Braathen,et al.  Regional tectono-sedimentary development of the highs and basins of the northwestern Barents Shelf , 2016 .

[27]  K. Ogata,et al.  Cone-in-cone and beef mineralization associated with Triassic growth basin faulting and shallow shale diagenesis, Edgeøya, Svalbard , 2016, Geological Magazine.

[28]  C. Morley,et al.  Growth faults above shale – Seismic-scale outcrop analogues from the Makran foreland, SW Pakistan , 2016 .

[29]  Anna Daniela Röhnert Geometry and sedimentary facies of low-angle clinoforms, Edgeøya, Svalbard , 2016 .

[30]  J. Best,et al.  Predicting bedforms and primary current stratification in cohesive mixtures of mud and sand , 2015, Journal of the Geological Society.

[31]  L. Stemmerik,et al.  Depositional evolution of the Upper Carboniferous – Lower Permian Wordiekammen carbonate platform, Nordfjorden High, central Spitsbergen, Arctic Norway , 2015 .

[32]  Gunn Mangerud,et al.  Late Triassic (Carnian– Rhaetian) palynology of Hopen, Svalbard , 2015 .

[33]  R. Gawthorpe,et al.  Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd Formation, Norwegian Barents Sea , 2015 .

[34]  C. Fielding Anatomy of falling‐stage deltas in the Turonian Ferron Sandstone of the western Henry Mountains Syncline, Utah: Growth faults, slope failures and mass transport complexes , 2015 .

[35]  J. Majka,et al.  Tectonics and Tectonothermal events , 2015 .

[36]  S. Pemberton,et al.  Bioturbation : Reworking Sediments for Better or Worse , 2015 .

[37]  T. Klausen,et al.  The Upper Triassic paralic deposits of the De Geerdalen Formation on Hopen: Outcrop analog to the subsurface Snadd Formation in the Barents Sea , 2014 .

[38]  A. Rotevatn,et al.  3D structure and evolution of folds during normal fault dip linkage , 2014, Journal of the Geological Society.

[39]  A. Ryseth Sedimentation at the Jurassic–Triassic boundary, south‐west Barents Sea , 2014 .

[40]  G. Lord,et al.  Triassic channel bodies on Hopen, Svalbard: Their facies, stratigraphic significance and spatial distribution , 2014 .

[41]  B. A. Lundschien,et al.  Triassic hydrocarbon potential in the Northern Barents Sea; integrating Svalbard and stratigraphic core data , 2014 .

[42]  A. Braathen,et al.  The Triassic – Early Jurassic of the northern Barents Shelf: a regional understanding of the Longyearbyen CO2 reservoir , 2014 .

[43]  A. Braathen,et al.  Styles of normal faulting and fault-controlled sedimentation in the Triassic deposits of , 2014 .

[44]  Gunn Mangerud,et al.  Palynology and geology of the Triassic succession of Svalbard and the Barents Sea , 2014 .

[45]  H. Fossen,et al.  Growth of normal faults in multilayer sequences: A 3D seismic case study from the Egersund Basin, Norwegian North Sea , 2013 .

[46]  A. Braathen,et al.  Evidence of faulting contradicts a quiescent northern Barents Shelf during the Triassic , 2013 .

[47]  R. Steel,et al.  Tidal depositional systems in the rock record: a review and new insights , 2012 .

[48]  M. Gingras,et al.  Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain , 2012 .

[49]  A. Martinius,et al.  Anatomy of a laterally migrating tidal bar in front of a delta system: Esdolomada Member, Roda Formation, Tremp‐Graus Basin, Spain , 2012 .

[50]  C. Robin,et al.  Gravity driven deformation controlled by the migration of the delta front: The Plio-Pleistocene of the Eastern Niger Delta , 2011 .

[51]  S. Buckley,et al.  Growth of extensional faults and folds during deposition of an evaporite-dominated half-graben basin; the Carboniferous Billefjorden Trough, Svalbard , 2011 .

[52]  I. Midtkandal,et al.  Triassic platform-margin deltas in the western Barents Sea , 2011 .

[53]  B. A. Lundschien,et al.  Chapter 15 Triassic deltaic sequences in the northern Barents Sea , 2011 .

[54]  E. Henriksen,et al.  Chapter 17 Uplift and erosion of the greater Barents Sea: impact on prospectivity and petroleum systems , 2011 .

[55]  J. Faleide,et al.  Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area , 2010 .

[56]  C. Beaumont,et al.  Shortening viscous pressure ridges, a solution to the enigma of initiating salt ‘withdrawal’ minibasins , 2010 .

[57]  I. Midtkandal,et al.  Depositional architecture of a low‐gradient ramp shelf in an epicontinental sea: the lower Cretaceous of Svalbard , 2009 .

[58]  I. Midtkandal,et al.  Lower Cretaceous lithostratigraphy across a regional subaerial unconformity in Spitsbergen: the Rurikfjellet and Helvetiafjellet formations , 2009 .

[59]  Olav,et al.  Structure and evolution of the continental margin off Norway and the Barents Sea , 2008 .

[60]  P. Kukla,et al.  Three‐dimensional restoration of original sedimentary geometries in deformed basin fill, onshore Brunei Darussalam, NW Borneo , 2008 .

[61]  Andrew Nicol,et al.  Displacement loss on growth faults due to sediment compaction , 2008 .

[62]  M. Mørk,et al.  Evolution of the Triassic shelf in the northern Barents Sea region , 2008 .

[63]  D. Worsley The post-Caledonian development of Svalbard and the western Barents Sea , 2008 .

[64]  K. Krajewski The Botneheia Formation [Middle Triassic] in Edgeoya and Barentsoya, Svalbard: lithostratigraphy, facies, phosphogenesis, paleoenvironment , 2008 .

[65]  R. Arnott,et al.  Origin of hummocky and swaley cross-stratification— The controlling influence of unidirectional current strength and aggradation rate , 2006 .

[66]  C. Fielding Upper flow regime sheets, lenses and scour fills: Extending the range of architectural elements for fluvial sediment bodies , 2006 .

[67]  S. Bennett,et al.  On the transition between 2D and 3D dunes , 2005 .

[68]  S. Hubbard,et al.  Sedimentology, Stratigraphic Architecture, and Ichnology of Gravity-Flow Deposits Partially Ponded in a Growth-Fault-Controlled Slope Minibasin, Tres Pasos Formation (Cretaceous), Southern Chile , 2005 .

[69]  B. Willis Deposits of Tide-Influenced River Deltas , 2005 .

[70]  J. Urai,et al.  Processes of normal fault evolution in a siliciclastic sequence: a case study from Miri, Sarawak, Malaysia , 2005 .

[71]  P. E. Potter,et al.  Mud and Mudstones: Introduction and Overview , 2005 .

[72]  J. Best,et al.  Sedimentology and kinematics of a large, retrogressive growth‐fault system in Upper Carboniferous deltaic sediments, western Ireland , 2004 .

[73]  G. Prosser,et al.  Anatomy and evolution of a Mediterranean‐type fault bounded basin: the Lower Pliocene of the northern Crotone Basin (Southern Italy) , 2004 .

[74]  J. Cartwright,et al.  Syndepositional faulting in the Grès d'Annot Formation, SE France: high-resolution kinematic analysis and stratigraphic response to growth faulting , 2004, Geological Society, London, Special Publications.

[75]  Andrew Nicol,et al.  Formation of segmented normal faults: a 3-D perspective , 2003 .

[76]  C. Morley,et al.  Characteristics of repeated, detached, Miocene–Pliocene tectonic inversion events, in a large delta province on an active margin, Brunei Darussalam, Borneo , 2003 .

[77]  E. Mutti,et al.  Deltaic, mixed and turbidite sedimentation of ancient foreland basins , 2003 .

[78]  R. Walker,et al.  Facies and sequential organisation of a mudstone-dominated slope and basin floor succession: the Gull Island Formation, Shannon Basin, Western Ireland , 2003 .

[79]  Sébastien Migeon,et al.  Marine hyperpycnal flows: initiation, behavior and related deposits. A review , 2003 .

[80]  G. Caillet,et al.  2D modelling of hydrocarbon migration along and across growth faults: an example from Nigeria , 2003, Petroleum Geoscience.

[81]  J. Muñoz,et al.  Low-amplitude, synsedimentary folding of a deltaic complex: Roda Sandstone (lower Eocene), South-Pyrenean Foreland Basin , 2003 .

[82]  H. Fossen,et al.  Layer rotation around vertical fault overlap zones: observations from seismic data, field examples, and physical experiments , 2002 .

[83]  H. Dypvik,et al.  Jurassic and Cretaceous palaeogeography and stratigraphic comparisons in the North Greenland-Svalbard region , 2002 .

[84]  R. Hiscott Depositional sequences controlled by high rates of sediment supply, sea-level variations, and growth faulting: the Quaternary Baram Delta of northwestern Borneo , 2001 .

[85]  J. Bhattacharya,et al.  Growth faults at the prodelta to delta-front transition, Cretaceous Ferron sandstone, Utah , 2001 .

[86]  C. Morley,et al.  3D Seismic study of a shale expulsion syncline at the base of the Champion delta, offshore Brunei and its implications for the early structural evolution of large delta systems , 2000 .

[87]  O. Walderhaug,et al.  Synsedimentary Faulting in a Mesozoic Deltaic Sequence, Svalbard, Arctic Norway--Fault Geometries, Faulting Mechanisms, and Sealing Properties , 2000 .

[88]  A. Braathen,et al.  Tertiary divergent thrust directions from partitioned transpression, Brøggerhalvøya, Spitsbergen , 2000 .

[89]  A. Braathen,et al.  Application of a critical wedge taper model to the Tertiary transpressional fold-thrust belt on Spitsbergen, Svalbard , 1999 .

[90]  M. Mørk Compositional Variations and Provenance of Triassic Sandstones from the Barents Shelf , 1999 .

[91]  J. Faleide,et al.  Cenozoic erosion and the preglacial uplift of the Svalbard Barents Sea region , 1998 .

[92]  K. McClay,et al.  Analog modeling of progradational delta systems , 1998 .

[93]  C. Morley,et al.  Anatomy of growth fault zones in poorly lithified sandstones and shales; implications for reservoir studies and seismic interpretation; Part 1, Outcrop study , 1997, Petroleum Geoscience.

[94]  Giorgio Basilici Sedimentary facies in an extensional and deep-lacustrine depositional system: the Pliocene Tiberino Basin, Central Italy , 1997 .

[95]  C. Morley,et al.  Comparison of gravity-driven deformation styles and behavior associated with mobile shales and salt , 1996 .

[96]  F. Massari Upper-Flow-Regime Stratification Types on Steep-Face, Coarse-Grained, Gilbert-Type Progradational Wedges (Pleistocene, Southern Italy) , 1996 .

[97]  C. Mansfield,et al.  The growth of normal faults by segment linkage , 1996, Geological Society, London, Special Publications.

[98]  R. Steel,et al.  Helvetiafjellet formation (Barremian-Aptian), Spitsbergen: characteristics of a transgressive succession , 1995 .

[99]  R. Goldring,et al.  Description and analysis of bioturbation and ichnofabric , 1993, Journal of the Geological Society.

[100]  D. Leckie,et al.  Hummocky Cross‐Stratification , 1993 .

[101]  R. Walker Facies, facies models and modern stratigraphic concept. , 1992 .

[102]  R. Steel,et al.  Mid-Carboniferous extension and rift-infill sequences in the Billefjorden Trough, Svalbard , 1992 .

[103]  Chang-Shu Yang,et al.  Diagnostic Attributes of Clastic Tidal Deposits: A Review , 1991 .

[104]  O. Martinsen,et al.  Extensional and compressional zones in slumps and slides in the Namurian of County Clare, Ireland , 1990, Journal of the Geological Society.

[105]  J. A. Lopez Structural styles of growth faults in the U.S. Gulf Coast Basin , 1990, Geological Society, London, Special Publications.

[106]  G. Ashley Classification of Large-Scale Subaqueous Bedforms: A New Look at an Old Problem-SEPM Bedforms and Bedding Structures , 1990 .

[107]  G. Ashley,et al.  Classification of large-scale subaqueous bedforms; a new look at an old problem , 1990 .

[108]  J. A. Lopez Structural styles of growth faults in US Gulf Coast basin , 1989 .

[109]  O. Martinsen Styles of soft-sediment deformation on a Namurian (Carboniferous) delta slope, Western Irish Namurian Basin, Ireland , 1989, Geological Society, London, Special Publications.

[110]  H. Posamentier,et al.  An Overview of the Fundamentals of Sequence Stratigraphy and Key Definitions , 1988 .

[111]  W. Nemec,et al.  Anatomy of Collapsed and Re-established Delta Front in Lower Cretaceous of Eastern Spitsbergen: Gravitational Sliding and Sedimentation Processes , 1988 .

[112]  K. Weber Hydrocarbon distribution patterns in Nigerian growth fault structures controlled by structural style and stratigraphy , 1987 .

[113]  James M. Wood,et al.  Inclined heterolithic stratification—Terminology, description, interpretation and significance , 1987 .

[114]  G. Owen Deformation processes in unconsolidated sands , 1987, Geological Society, London, Special Publications.

[115]  G. Middleton,et al.  Horizontal Laminae Formed under Upper Flow Regime Plane Bed Conditions , 1986, The Journal of Geology.

[116]  R. Hiscott,et al.  Deep-water facies, processes and models: a review and classification scheme for modern and ancient sediments , 1986 .

[117]  K. Weber Hydrocarbon Distribution Patterns in Nigerian Growth-Fault Structures Controlled by Structural Style and Stratigraphy: ABSTRACT , 1986 .

[118]  H. Rieke Sedimentary Structures—Their Character and Physical Basis, Vols. I and II , 1985 .

[119]  J. Faleide,et al.  Evolution of the western Barents Sea , 1984 .

[120]  Z. Garfunkel Large-scale submarine rotational slumps and growth faults in the Eastern Mediterranean , 1984 .

[121]  R. Steel,et al.  Svalbard’s post-Caledonian strata — an atlas of sedimentational patterns and palaeogeographic evolution , 1984 .

[122]  M. Edwards,et al.  Unstable Progradational Clastic Shelf Margins , 1983 .

[123]  J. Boothroyd,et al.  Deposition of climbing‐ripple beds: a flume simulation , 1982 .

[124]  R. Knarud,et al.  Depositional and Diagenetic Environments of the Triassic and Lower Jurassic Succession of Svalbard , 1982 .

[125]  M. Visser Neap-spring cycles reflected in Holocene subtidal large-scale bedform deposits: A preliminary note , 1980 .

[126]  R. Anderton Tidal-shelf sedimentation: an example from the Scottish Dalradian , 1976 .

[127]  M. Edwards Growth Faults in Upper Triassic Deltaic Sediments, Svalbard , 1976 .

[128]  C. H. Bruce Pressured Shale and Related Sediment Deformation: Mechanism for Development of Regional Contemporaneous Faults , 1973 .

[129]  J. Nagy,et al.  The Triassic succession of Barentsøya, Edgeøya, and Hopen (Svalbard) , 1971 .

[130]  R. Carver Differential Compaction as a Cause of Regional Contemporaneous Faults , 1968 .

[131]  Ray Ocamb Growth Faults of South Louisiana , 1961 .