Spectral Partitioning: The More Eigenvectors, The Better

A spectral partitioning method uses the eigenvectors of a graph's adjacency or Laplacian matrix to construct a geometric representation (e.g., a linear ordering) which is then heuristically partitioned. We map each graph vertex to a vector in d-dimensional space, where d is the number of eigenvectors, such that these vectors constitute an instance of the vector partitioning problem. When all the eigenvectors are used, graph partitioning exactly reduces to vector partitioning. This result motivates a simple ordering heuristic that can be used to yield high-quality 2-way and multi-way partitionings. Our experiments suggest the vector partitioning perspective opens the door to new and effective heuristics.

[1]  A. J. Stone,et al.  Logic partitioning , 1966, DAC.

[2]  Howard R. Charney,et al.  Efficient partitioning of components , 1968, DAC.

[3]  Kenneth M. Hall An r-Dimensional Quadratic Placement Algorithm , 1970 .

[4]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[5]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[6]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[7]  P. Wolfe,et al.  The minimization of certain nondifferentiable sums of eigenvalues of symmetric matrices , 1975 .

[8]  E. Barnes An algorithm for partitioning the nodes of a graph , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[9]  Michael W. Carter,et al.  The indefinite zero-one quadratic problem , 1984, Discret. Appl. Math..

[10]  J. Blanks Near-Optimal Placement Using a Quadratic Objective Function , 1985, DAC 1985.

[11]  Lawrence T. Pileggi,et al.  A quadratic metric with a simple solution scheme for initial placement , 1988, DAC '88.

[12]  Anthony Vannelli,et al.  A New Heuristic for Partitioning the Nodes of a Graph , 1988, SIAM J. Discret. Math..

[13]  Chung-Kuan Cheng,et al.  Towards efficient hierarchical designs by ratio cut partitioning , 1989, 1989 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers.

[14]  Hans Jürgen Prömel,et al.  Finding clusters in VLSI circuits , 1990, 1990 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers.

[15]  Thomas Lengauer,et al.  Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.

[16]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[17]  V. Rao,et al.  New heuristics and lower bounds for graph partitioning , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[18]  A. Kahng,et al.  A new approach to effective circuit clustering , 1992, 1992 IEEE/ACM International Conference on Computer-Aided Design.

[19]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[20]  Andrew B. Kahng,et al.  A new approach to effective circuit clustering , 1992, ICCAD.

[21]  Brian L. Mark,et al.  An efficient eigenvector approach for finding netlist partitions , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[22]  Andrew B. Kahng,et al.  Geometric Embeddings for Faster and Better Multi-Way Netlist Partitioning , 1993, 30th ACM/IEEE Design Automation Conference.

[23]  Martine D. F. Schlag,et al.  Spectral K-Way Ratio-Cut Partitioning and Clustering , 1993, 30th ACM/IEEE Design Automation Conference.

[24]  Dorothea Wagner,et al.  Modeling Hypergraphs by Graphs with the Same Mincut Properties , 1993, Inf. Process. Lett..

[25]  Charles Delorme,et al.  The performance of an eigenvalue bound on the max-cut problem in some classes of graphs , 1993, Discret. Math..

[26]  Charles Delorme,et al.  Laplacian eigenvalues and the maximum cut problem , 1993, Math. Program..

[27]  Horst D. Simon,et al.  Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems , 1994, Concurr. Pract. Exp..

[28]  Konrad Doll,et al.  Partitioning Very Large Circuits Using Analytical Placement Techniques , 1994, 31st Design Automation Conference.

[29]  Andrew B. Kahng,et al.  A General Framework For Vertex Orderings, With Applications To Netlist Clustering , 1994, IEEE/ACM International Conference on Computer-Aided Design.

[30]  C. Alpert,et al.  A General Framework For Vertex Orderings, With Applications To Netlist Clustering , 1994, IEEE/ACM International Conference on Computer-Aided Design.

[31]  Franz Rendl,et al.  A computational study of graph partitioning , 1994, Math. Program..

[32]  C. Alpert,et al.  Multi-Way Partitioning Via Spacefilling Curves and Dynamic Programming , 1994, 31st Design Automation Conference.

[33]  Byung Ro Moon,et al.  A Fast and Stable Hybrid Genetic Algorithm for the Ratio-Cut Partitioning Problem on Hypergraphs , 1994, 31st Design Automation Conference.

[34]  Gary L. Miller,et al.  On the performance of spectral graph partitioning methods , 1995, SODA '95.

[35]  Franz Rendl,et al.  Solving the Max-cut Problem Using Eigenvalues , 1995, Discret. Appl. Math..

[36]  Bruce Hendrickson,et al.  An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations , 1995, SIAM J. Sci. Comput..

[37]  D. Greene,et al.  Multi-Way Partitioning Via Geometric Embeddings, Orderings, and Dynamic Programming , 1995 .

[38]  Andrew B. Kahng,et al.  Recent developments in netlist partitioning: a survey , 1995 .

[39]  Franz Rendl,et al.  A projection technique for partitioning the nodes of a graph , 1995, Ann. Oper. Res..

[40]  Andrew B. Kahng,et al.  Recent directions in netlist partitioning: a survey , 1995, Integr..

[41]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[42]  Alan M. Frieze,et al.  Improved Approximation Algorithms for MAX k-CUT and MAX BISECTION , 1995, IPCO.

[43]  DraftDaniel A. Spielman,et al.  Spectral Partitioning Works : Planar graphs and nite element meshesPreliminary , 1996 .

[44]  Satissed Now Consider Improved Approximation Algorithms for Maximum Cut and Satissability Problems Using Semideenite Programming , 1997 .