New lower bounds for binary covering codes

G.D. Chen et al. (ibid., vol.IT-32, p.680-94, 1986) presented two new lower bounds for K(n,R), where K(n,R) denotes the minimum cardinality of a binary code of length n and covering radius R. The author shows that a slight modification gives further improvements and some examples are given to confirm the argument. Codes that have a certain partitioning property are considered. >

[1]  R. G. Stanton,et al.  Intersection Inequalities for the Covering Problem , 1969 .

[2]  N. J. A. Sloane,et al.  On the covering radius of codes , 1985, IEEE Trans. Inf. Theory.

[3]  Jacobus H. van Lint Recent Results on Covering Problems , 1988, AAECC.

[4]  Joel H. Spencer,et al.  Balancing Families of Sets , 1978, J. Comb. Theory, Ser. A.

[5]  R. G. Stanton,et al.  Covering Problems for Dichotomized Matching , 1968 .

[6]  József Beck,et al.  "Integer-making" theorems , 1981, Discret. Appl. Math..

[7]  Richard M. Wilson,et al.  Short codes with a given coveting radius , 1989, IEEE Trans. Inf. Theory.

[8]  N. J. A. Sloane,et al.  Further results on the covering radius of codes , 1986, IEEE Trans. Inf. Theory.

[9]  N. J. A. Sloane,et al.  Inequalities for covering codes , 1988, IEEE Trans. Inf. Theory.

[10]  R. G. Stanton,et al.  Maximal and minimal coverings of (k − 1)-tuples by k-tuples , 1968 .

[11]  Ronald C. Mullin,et al.  Coverings of Pairs by Quintuples , 1987, J. Comb. Theory, Ser. A.

[12]  E. Bannai,et al.  Algebraic Combinatorics I: Association Schemes , 1984 .

[13]  Gérard D. Cohen,et al.  Covering radius - Survey and recent results , 1985, IEEE Trans. Inf. Theory.

[14]  Gerhard J. M. van Wee,et al.  Improved sphere bounds on the coveting radius of codes , 1988, IEEE Trans. Inf. Theory.

[15]  Marion Fort,et al.  Minimal coverings of pairs by triples , 1958 .