Mode Surfaces of Symmetric Tensor Fields: Topological Analysis and Seamless Extraction

Mode surfaces are the generalization of degenerate curves and neutral surfaces, which constitute 3D symmetric tensor field topology. Efficient analysis and visualization of mode surfaces can provide additional insight into not only degenerate curves and neutral surfaces, but also how these features transition into each other. Moreover, the geometry and topology of mode surfaces can help domain scientists better understand the tensor fields in their applications. Existing mode surface extraction methods can miss features in the surfaces. Moreover, the mode surfaces extracted from neighboring cells have gaps, which make their subsequent analysis difficult. In this paper, we provide novel analysis on the topological structures of mode surfaces, including a common parameterization of all mode surfaces of a tensor field using 2D asymmetric tensors. This allows us to not only better understand the structures in mode surfaces and their interactions with degenerate curves and neutral surfaces, but also develop an efficient algorithm to seamlessly extract mode surfaces, including neutral surfaces. The seamless mode surfaces enable efficient analysis of their geometric structures, such as the principal curvature directions. We apply our analysis and visualization to a number of solid mechanics data sets.

[1]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[2]  R. Nickalls Viète, Descartes and the cubic equation , 2006, The Mathematical Gazette.

[3]  Jay D. Humphrey,et al.  An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity , 2000 .

[4]  HesselinkLambertus,et al.  The Topology of Symmetric, Second-Order 3D Tensor Fields , 1997 .

[5]  Eugene Zhang,et al.  Tensor field design in volumes , 2017, SIGGRAPH Asia Technical Briefs.

[6]  Charles Hansen,et al.  The Visualization Handbook , 2011 .

[7]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[8]  Olaf Kolditz,et al.  Tensor Field Visualization using Fiber Surfaces of Invariant Space , 2019, IEEE Transactions on Visualization and Computer Graphics.

[9]  Eugene Zhang,et al.  Interactive Visualization of Rotational Symmetry Fields on Surfaces , 2011, IEEE Transactions on Visualization and Computer Graphics.

[10]  Lawrence Roy,et al.  Multi-Scale Topological Analysis of Asymmetric Tensor Fields on Surfaces , 2020, IEEE Transactions on Visualization and Computer Graphics.

[11]  Gregory M. Nielson,et al.  Dual marching cubes , 2004, IEEE Visualization 2004.

[12]  Robert S. Laramee,et al.  Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold , 2016, IEEE Transactions on Visualization and Computer Graphics.

[13]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[14]  Markus Stommel,et al.  Visualization and Analysis of Second‐Order Tensors: Moving Beyond the Symmetric Positive‐Definite Case , 2013, Comput. Graph. Forum.

[15]  John Greene Traces of Matrix Products , 2014 .

[16]  Yixun Shi,et al.  Algorithm 748: enclosing zeros of continuous functions , 1995, TOMS.

[17]  C. Hoffmann Algebraic curves , 1988 .

[18]  Weijun Liu,et al.  A Robust and Topological Correct Marching Cube Algorithm Without Look-Up Table , 2005, The Fifth International Conference on Computer and Information Technology (CIT'05).

[19]  Lawrence Roy,et al.  Robust and Fast Extraction of 3D Symmetric Tensor Field Topology , 2019, IEEE Transactions on Visualization and Computer Graphics.

[20]  Carl-Fredrik Westin,et al.  Invariant Crease Lines for Topological and Structural Analysis of Tensor Fields , 2008, IEEE Transactions on Visualization and Computer Graphics.

[21]  Alex T. Pang,et al.  Topological lines in 3D tensor fields and discriminant Hessian factorization , 2005, IEEE Transactions on Visualization and Computer Graphics.

[22]  Stephen H. Friedberg,et al.  Elementary Linear Algebra , 2007 .

[23]  Robert S. Laramee,et al.  Asymmetric Tensor Field Visualization for Surfaces , 2011, IEEE Transactions on Visualization and Computer Graphics.

[24]  Roberto Grosso An asymptotic decider for robust and topologically correct triangulation of isosurfaces: topologically correct isosurfaces , 2017, CGI.

[25]  Alex T. Pang,et al.  Topological lines in 3D tensor fields , 2004, IEEE Visualization 2004.

[26]  Xuelong Li,et al.  Tensors in Image Processing and Computer Vision , 2009, Advances in Pattern Recognition.

[27]  HesselinkLambertus,et al.  Visualizing Second-Order Tensor Fields with Hyperstreamlines , 1993 .

[28]  R. Irving,et al.  Integers, Polynomials, and Rings: A Course in Algebra , 2003 .

[29]  Stephen Mann,et al.  Tessellating Algebraic Curves and Surfaces using A-patches , 2008, GRAPP.

[30]  Gerik Scheuermann,et al.  Extremal curves and surfaces in symmetric tensor fields , 2017, The Visual Computer.

[31]  John C. Hart,et al.  Guaranteeing the topology of an implicit surface polygonization for interactive modeling , 1997, SIGGRAPH Courses.

[32]  Lambertus Hesselink,et al.  Visualizing second-order tensor fields with hyperstreamlines , 1993, IEEE Computer Graphics and Applications.

[33]  松本 幸夫 An introduction to Morse theory , 2002 .

[34]  A. Blumberg BASIC TOPOLOGY , 2002 .

[35]  Alex T. Pang,et al.  2D asymmetric tensor analysis , 2005, VIS 05. IEEE Visualization, 2005..

[36]  R. Lakes,et al.  Poisson's ratio and modern materials , 2011, Nature Materials.

[37]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[38]  Brian Wyvill,et al.  A Survey on Implicit Surface Polygonization , 2015, ACM Comput. Surv..

[39]  James Damon,et al.  Generic Structure of Two-Dimensional Images Under Gaussian Blurring , 1998, SIAM J. Appl. Math..

[40]  Robert S. Laramee,et al.  Asymmetric Tensor Analysis for Flow Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[41]  A. Kay Integers, ℤ , 2021, Number Systems.

[42]  Afonso Paiva,et al.  Robust adaptive meshes for implicit surfaces , 2006, 2006 19th Brazilian Symposium on Computer Graphics and Image Processing.

[43]  Keith R. Matthews,et al.  Elementary Linear Algebra , 1998 .