Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae).

The coelacanth, a "living fossil," lives near the coast of the Comoros archipelago in the Indian Ocean. Living at a depth of about 200 m, the Comoran coelacanth receives only a narrow range of light, at about 480 nm. To detect the entire range of "color" at this depth, the coelacanth appears to use only two closely related paralogous RH1 and RH2 visual pigments with the optimum light sensitivities (lambdamax) at 478 nm and 485 nm, respectively. The lambdamax values are shifted about 20 nm toward blue compared with those of the corresponding orthologous pigments. Mutagenesis experiments show that each of these coadapted changes is fully explained by two amino acid replacements.

[1]  S. Yokoyama,et al.  The "five-sites" rule and the evolution of red and green color vision in mammals. , 1998, Molecular biology and evolution.

[2]  S. Kawamura,et al.  Regeneration of ultraviolet pigments of vertebrates , 1998, FEBS letters.

[3]  S. Kawamura,et al.  Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis) , 1998, Vision Research.

[4]  J. Nathans,et al.  Mechanisms of spectral tuning in the mouse green cone pigment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[5]  A. Meyer,et al.  The complete DNA sequence of the mitochondrial genome of a "living fossil," the coelacanth (Latimeria chalumnae). , 1997, Genetics.

[6]  J. Partridge,et al.  Mechanisms of wavelength tuning in the rod opsins of deep-sea fishes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  S. Yokoyama,et al.  Molecular genetic basis of adaptive selection: examples from color vision in vertebrates. , 1997, Annual review of genetics.

[8]  S. Kawamura,et al.  Phylogenetic Relationships among Short Wavelength-sensitive Opsins of American Chameleon (Anolis carolinensis) and Other Vertebrates , 1996, Vision Research.

[9]  J. Maisey Discovering Fossil Fishes , 1996 .

[10]  Y. Fukada,et al.  Molecular properties of chimerical mutants of gecko blue and bovine rhodopsin. , 1996, Biochemistry.

[11]  A. Routtenberg Knockout mouse fault lines , 1995, Nature.

[12]  S. Yokoyama,et al.  Amino acid replacements and wavelength absorption of visual pigments in vertebrates. , 1995, Molecular biology and evolution.

[13]  S. Yokoyama,et al.  Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates. , 1994, Molecular biology and evolution.

[14]  S. Pääbo,et al.  Which home for coelacanth? , 1993, Nature.

[15]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[16]  Eberhart Zrenner,et al.  Is colour vision possible with only rods and blue-sensitive cones? , 1991, Nature.

[17]  K. Thomson Living Fossil: The Story of the Coelacanth , 1991 .

[18]  H. Khorana,et al.  Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[19]  H. Sambrook Molecular cloning : a laboratory manual. Cold Spring Harbor, NY , 1989 .

[20]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[21]  J. Nathans,et al.  Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.

[22]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[23]  J. Nathans,et al.  Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin , 1983, Cell.

[24]  N. A. Locket Review Lecture: Some advances in coelacanth biology , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  Locket Na Retinal Structure in Latimeria chalumnae , 1973 .

[26]  H. Dartnall,et al.  Visual Pigment of the Coelacanth , 1972, Nature.

[27]  G. Wald The Molecular Basis of Visual Excitation , 1968, Nature.

[28]  M. O. Dayhoff,et al.  Atlas of protein sequence and structure , 1965 .