Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae).
暂无分享,去创建一个
N. Blow | S. Yokoyama | F. Radlwimmer | H. Zhang | Hua Zhang | Nathan S. Blow | Huan Zhang
[1] S. Yokoyama,et al. The "five-sites" rule and the evolution of red and green color vision in mammals. , 1998, Molecular biology and evolution.
[2] S. Kawamura,et al. Regeneration of ultraviolet pigments of vertebrates , 1998, FEBS letters.
[3] S. Kawamura,et al. Functional characterization of visual and nonvisual pigments of American chameleon (Anolis carolinensis) , 1998, Vision Research.
[4] J. Nathans,et al. Mechanisms of spectral tuning in the mouse green cone pigment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[5] A. Meyer,et al. The complete DNA sequence of the mitochondrial genome of a "living fossil," the coelacanth (Latimeria chalumnae). , 1997, Genetics.
[6] J. Partridge,et al. Mechanisms of wavelength tuning in the rod opsins of deep-sea fishes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[7] S. Yokoyama,et al. Molecular genetic basis of adaptive selection: examples from color vision in vertebrates. , 1997, Annual review of genetics.
[8] S. Kawamura,et al. Phylogenetic Relationships among Short Wavelength-sensitive Opsins of American Chameleon (Anolis carolinensis) and Other Vertebrates , 1996, Vision Research.
[9] J. Maisey. Discovering Fossil Fishes , 1996 .
[10] Y. Fukada,et al. Molecular properties of chimerical mutants of gecko blue and bovine rhodopsin. , 1996, Biochemistry.
[11] A. Routtenberg. Knockout mouse fault lines , 1995, Nature.
[12] S. Yokoyama,et al. Amino acid replacements and wavelength absorption of visual pigments in vertebrates. , 1995, Molecular biology and evolution.
[13] S. Yokoyama,et al. Gene duplications and evolution of the short wavelength-sensitive visual pigments in vertebrates. , 1994, Molecular biology and evolution.
[14] S. Pääbo,et al. Which home for coelacanth? , 1993, Nature.
[15] William R. Taylor,et al. The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..
[16] Eberhart Zrenner,et al. Is colour vision possible with only rods and blue-sensitive cones? , 1991, Nature.
[17] K. Thomson. Living Fossil: The Story of the Coelacanth , 1991 .
[18] H. Khorana,et al. Glutamic acid-113 serves as the retinylidene Schiff base counterion in bovine rhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.
[19] H. Sambrook. Molecular cloning : a laboratory manual. Cold Spring Harbor, NY , 1989 .
[20] N. Saitou,et al. The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.
[21] J. Nathans,et al. Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. , 1986, Science.
[22] J. Felsenstein. CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.
[23] J. Nathans,et al. Isolation, sequence analysis, and intron-exon arrangement of the gene encoding bovine rhodopsin , 1983, Cell.
[24] N. A. Locket. Review Lecture: Some advances in coelacanth biology , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[25] Locket Na. Retinal Structure in Latimeria chalumnae , 1973 .
[26] H. Dartnall,et al. Visual Pigment of the Coelacanth , 1972, Nature.
[27] G. Wald. The Molecular Basis of Visual Excitation , 1968, Nature.
[28] M. O. Dayhoff,et al. Atlas of protein sequence and structure , 1965 .