Asymptotically Optimal Regularization in Smooth Parametric Models
暂无分享,去创建一个
Michael I. Jordan | Guillaume Bouchard | Francis R. Bach | Percy Liang | F. Bach | P. Liang | Guillaume Bouchard
[1] M. Bartlett,et al. APPROXIMATE CONFIDENCE INTERVALSMORE THAN ONE UNKNOWN PARAMETER , 1953 .
[2] M. Bartlett,et al. APPROXIMATE CONFIDENCE INTERVALS , 1953 .
[3] H. Akaike. A new look at the statistical model identification , 1974 .
[4] G. Wahba. Smoothing noisy data with spline functions , 1975 .
[5] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[6] J. Bernardo. Reference Posterior Distributions for Bayesian Inference , 1979 .
[7] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[8] B. Levit. Second-Order Asymptotic Optimality and Positive Solutions of Schrödinger’s Equation , 1986 .
[9] R. Shibata. Statistical aspects of model selection , 1989 .
[10] C. Stein,et al. Estimation with Quadratic Loss , 1992 .
[11] Shun-ichi Amari,et al. Network information criterion-determining the number of hidden units for an artificial neural network model , 1994, IEEE Trans. Neural Networks.
[12] G. Kitagawa,et al. Generalised information criteria in model selection , 1996 .
[13] A. V. D. Vaart,et al. Asymptotic Statistics: U -Statistics , 1998 .
[14] Rich Caruana,et al. Multitask Learning , 1998, Encyclopedia of Machine Learning and Data Mining.
[15] A. V. D. Vaart. Asymptotic Statistics: Delta Method , 1998 .
[16] Andrew McCallum,et al. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.
[17] André Elisseeff,et al. Stability and Generalization , 2002, J. Mach. Learn. Res..
[18] Rajat Raina,et al. Classification with Hybrid Generative/Discriminative Models , 2003, NIPS.
[19] Tom Heskes,et al. Task Clustering and Gating for Bayesian Multitask Learning , 2003, J. Mach. Learn. Res..
[20] Guillaume Bouchard,et al. The Tradeoff Between Generative and Discriminative Classifiers , 2004 .
[21] Charles A. Micchelli,et al. Learning Multiple Tasks with Kernel Methods , 2005, J. Mach. Learn. Res..
[22] P. Bartlett,et al. Local Rademacher complexities , 2005, math/0508275.
[23] Christopher Joseph Pal,et al. Multi-Conditional Learning: Generative/Discriminative Training for Clustering and Classification , 2006, AAAI.
[24] A. Tsybakov,et al. PENALIZED MAXIMUM LIKELIHOOD AND SEMIPARAMETRIC SECOND-ORDER EFFICIENCY , 2006, math/0605437.
[25] Yoshua Bengio,et al. Entropy Regularization , 2006, Semi-Supervised Learning.
[26] Morten Nielsen,et al. A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules , 2006, PLoS Comput. Biol..
[27] S. Geer,et al. Regularization in statistics , 2006 .
[28] Gábor Lugosi,et al. Prediction, learning, and games , 2006 .
[29] Massimiliano Pontil,et al. Multi-Task Feature Learning , 2006, NIPS.
[30] Tom Minka,et al. Principled Hybrids of Generative and Discriminative Models , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).
[31] Guillaume Bouchard. Bias-variance tradeoff in hybrid generative-discriminative models , 2007, ICMLA 2007.
[32] Michael I. Jordan,et al. An asymptotic analysis of generative, discriminative, and pseudolikelihood estimators , 2008, ICML '08.
[33] Jean-Philippe Vert,et al. Clustered Multi-Task Learning: A Convex Formulation , 2008, NIPS.
[34] Yonina C. Eldar. Generalized SURE for Exponential Families: Applications to Regularization , 2008, IEEE Transactions on Signal Processing.
[35] Nathan Srebro,et al. On the Interaction between Norm and Dimensionality: Multiple Regimes in Learning , 2010, ICML.