Pathogen population genetics, evolutionary potential, and durable resistance.

We hypothesize that the evolutionary potential of a pathogen population is reflected in its population genetic structure. Pathogen populations with a high evolutionary potential are more likely to overcome genetic resistance than pathogen populations with a low evolutionary potential. We propose a flexible framework to predict the evolutionary potential of pathogen populations based on analysis of their genetic structure. According to this framework, pathogens that pose the greatest risk of breaking down resistance genes have a mixed reproduction system, a high potential for genotype flow, large effective population sizes, and high mutation rates. The lowest risk pathogens are those with strict asexual reproduction, low potential for gene flow, small effective population sizes, and low mutation rates. We present examples of high-risk and low-risk pathogens. We propose general guidelines for a rational approach to breed durable resistance according to the evolutionary potential of the pathogen.

[1]  C. Mundt,et al.  Primary disease gradients of bacterial blight of rice. , 1999, Phytopathology.

[2]  A. Paterson,et al.  A “defeated” rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae , 1999, Molecular and General Genetics MGG.

[3]  D. Ritchie,et al.  Race shift in Xanthomonas campestris pv. vesicatoria within a season in field-grown pepper , 1996 .

[4]  J. Burdon,et al.  The effect of sexual and asexual reproduction on the isozyme structure of populations of Puccinia graminis , 1985 .

[5]  J. Oard,et al.  Major gene, nonallelic sheath blight resistance from the rice cultivars Jasmine 85 and Teqing , 1999 .

[6]  J. B. Jones,et al.  Diversity among xanthomonads pathogenic on pepper and tomato. , 1998, Annual review of phytopathology.

[7]  M. Jeger,et al.  The epidemiology, variability and control of the downy mildews of pearl millet and sorghum, with particular reference to Africa , 1998 .

[8]  G. Shaner,et al.  Inheritance of Latent Period of Puccinia recondita in Wheat , 1997 .

[9]  P. S. Matthews,et al.  Breeding for Highly Fertile Isolates of Nectria haematococca MPVI that are Highly Virulent on Pea and In Planta Selection for Virulent Recombinants. , 2001, Phytopathology.

[10]  T. Johnston Further studies on microbiological reduction of nematodc population in water-saturated soils. , 1957 .

[11]  P. Zeng,et al.  Morphological, Pathogenic, and Genetic Comparisons of Colletotrichum graminicola Isolates from Poaceae. , 1999, Plant disease.

[12]  K. Rai,et al.  Genetic Resistance of Pearl Millet Male-Sterile Lines to Diverse Indian Pathotypes of Sclerospora graminicola. , 2001, Plant disease.

[13]  M. Boulif,et al.  Identification of a new race in Pyrenophora tritici-repentis: implications for the current pathotype classification system , 1995 .

[14]  K. L. Athow,et al.  Two new physiologic races of phytophthora megasperma f. sp. glycinea , 1983 .

[15]  M. Corrales,et al.  Resistance to Colletotrichum lindemuthianum isolates from middle America and Andean South America in different common bean races , 1995 .

[16]  H. Geiger,et al.  Genetic Structure of Setosphaeria turcica Populations in Tropical and Temperate Climates. , 1998, Phytopathology.

[17]  R. H. Biffen Mendel's Laws of Inheritance and Wheat Breeding , 1905, The Journal of Agricultural Science.

[18]  S. B. Goodwin,et al.  DNA Fingerprint Probe from Mycosphaerella graminicola Identifies an Active Transposable Element. , 2001, Phytopathology.

[19]  D. L. Long,et al.  Virulence of Puccinia recondita f. sp. tritici in the United States during 1988-1990 , 1992 .

[20]  I. Crute,et al.  Apple scab resistance from Malus floribunda 821 (Vf) is rendered ineffective by isolates of Venturia inaequalis from Malus floribunda , 1994 .

[21]  M. Jeger,et al.  Colletotrichum lindemuthianum on bean: population dynamics of the pathogen and breeding for resistance. , 1992 .

[22]  J. Bennetzen,et al.  Reactions of maize lines carrying Rp resistance genes to isolates of the common rust pathogen, Puccinia sorghi , 1991 .

[23]  J. Kolmer Genetics of resistance to wheat leaf rust. , 1996, Annual review of phytopathology.

[24]  B. Keeling A New Physiologic Race ofPhytophthora megaspermaf. sp.glycinea , 1984 .

[25]  M. Wolfe Trying to understand and control powdery mildew , 1984 .

[26]  L. Kohn The clonal dynamic in wild and agricultural plant–pathogen populations , 1995 .

[27]  M. Brurberg,et al.  Genetic variability of Phytophthora infestans in Norway and Finland as revealed by mating type and fingerprint probe RG57 , 1999 .

[28]  S. B. Goodwin The population genetics of phytophthora. , 1997, Phytopathology.

[29]  B. McDonald,et al.  Genetic Structure of Rhynchosporium secalis in Australia. , 1999, Phytopathology.

[30]  J. Irwin,et al.  Changes in the Racial Composition of Phytophthora sojae in Australia Between 1979 and 1996. , 1998, Plant disease.

[31]  B. McDonald,et al.  Genetic Structure and Temporal Dynamics of a Colletotrichum graminicola Population in a Sorghum Disease Nursery. , 1998, Phytopathology.

[32]  S. B. Goodwin,et al.  Increased genotypic diversity via migration and possible occurrence of sexual reproduction of Phytophthora infestans in Poland , 1994 .

[33]  W. M. Dawson,et al.  Short rotation coppice willow in Northern Ireland since 1973: development of the use of mixtures in the control of foliar rust (Melampsora spp.) , 1998 .

[34]  H. Dubin,et al.  Breeding disease-resistant wheats for tropical highlands and lowlands. , 1996, Annual review of phytopathology.

[35]  Jean F. Malcolmson,et al.  Races of Phytophthora infestans occurring in Great Britain , 1969 .

[36]  S. Dhahi,et al.  The genetics of pathogenic aggressiveness in three dikaryons of Ustilago hordei , 1984 .

[37]  B. Cohen,et al.  Panglobal distribution of a single clonal lineage of the Irish potato famine fungus. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[38]  H. H. Flor The Complementary Genic Systems in Flax and Flax Rust , 1956 .

[39]  Y. Michalakis,et al.  Genetic Diversity and Pathogenic Variation of Colletotrichum lindemuthianum in the Three Centers of Diversity of Its Host, Phaseolus vulgaris. , 1997, Phytopathology.

[40]  R. Nelson,et al.  The Residual and Interactive Expressions of 'Defeated' Wheat Stem Rust Resistance Genes , 1986 .

[41]  A. C. Triantaphyllou,et al.  CHAPTER 13 – Genetics and Cytology , 1971 .

[42]  R. Park,et al.  Recent pathogenic changes in the leaf (brown) rust pathogen of wheat and the crown rust pathogen of oats in Australia in relation to host resistance. , 2000 .

[43]  M. Pei,et al.  Heterogeneous Nature of a ‘new’ Pathotype of Melampsora Rust on Salix Revealed by AFLP , 2000, European Journal of Plant Pathology.

[44]  H. Leung,et al.  Pathogen fitness penalty as a predictor of durability of disease resistance genes. , 2001, Annual review of phytopathology.

[45]  J. Burdon,et al.  Isozyme Uniformity and Virulence Variation in Puccinia graminis f. sp. tritici and P. recondita f. sp. tritici in Australia , 1983 .

[46]  S. Palumbi,et al.  Humans as the world's greatest evolutionary force. , 2001, Science.

[47]  A. Schmitthenner Problems and progress in control of Phytophthora root rot of soybean. , 1985 .

[48]  P. Vos,et al.  AFLP: a new technique for DNA fingerprinting. , 1995, Nucleic acids research.

[49]  J. Prot A naturally occurring resistance breaking biotype of Meloidogyne arenaria on tomato. Reproduction and pathogenicity on tomato cultivars Roma and Rossol , 1984 .

[50]  C. Wellings,et al.  Puccinia striiformis f.sp. tritici in Australasia: pathogenic changes during the first 10 years , 1990 .

[51]  M. Hobe,et al.  Phytophthora sojae races in Ohio over a 10-year interval , 1994 .

[52]  T. Mew,et al.  Changes in race frequency of Xanthomonas oryzae pv. oryzae in response to rice cultivars planted in the Philippines , 1992 .

[53]  R. McIntosh Pre-emptive breeding to control wheat rusts , 1992 .

[54]  R. Johnson Reflections of a plant pathologist on breeding for disease resistance, with emphasis on yellow rust and eyespot of wheat. , 1992 .

[55]  O. R. Reddy Pathogenic Variability in Xanthomonas oryzae , 1976 .

[56]  A. Roelfs,et al.  Epidemiology in North America , 1985 .

[57]  M. Corrales,et al.  Breeding for disease resistance. , 1991 .

[58]  B. Reddy,et al.  Development of screening methods and identification of stable resistance to anthracnose in sorghum , 1994 .

[59]  M. S. Wolfe,et al.  POPULATION GENETICS OF PLANT PATHOGEN INTERACTIONS: The Example of the Erysiphe graminis-Hordeum vulgare Pathosystem , 1994 .

[60]  M. Ramstedt Rust disease on willows – virulence variation and resistance breeding strategies , 1999 .

[61]  R. Allan,et al.  Use of Alien Genes for the Development of Disease Resistance in Wheat , 1995 .

[62]  A. Roelfs,et al.  A Comparison of Virulence Phenotypes in Wheat Stem Rust Populations Reproducing Sexually and Asexually , 1980 .

[63]  B. Staskawicz,et al.  Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2 , 1996, Journal of bacteriology.

[64]  J. Irwin,et al.  Effect of Phytophthora root and stem rot on the response of field-grown soybean to Saturated Soil Culture , 1991 .

[65]  B. McDonald,et al.  Population Structure of Mycosphaerella graminicola: From Lesions to Continents. , 2002, Phytopathology.

[66]  H. Förster,et al.  Restriction fragment length polymorphisms of the mitochondrial DNA of Phytophthora megasperma isolated from soybean, alfalfa, and fruit trees. , 1989 .

[67]  R. K. Jones,et al.  Characterization of a New Race of Exserohilum turcicum Virulent on Corn with Resistance Gene HtN , 1989 .

[68]  M. Joosten,et al.  Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene , 1994, Nature.

[69]  L. F. Jackson Race Differentiation, Distribution, and Frequency of Rhynchosporium secalis in California , 1976 .

[70]  L. Kohn,et al.  Clonal dispersal and spatial mixing in populations of the plant pathogenic fungus, Sclerotinia sclerotiorum , 1995 .

[71]  D. Dahlbeck Mutations for Change of Race in Cultures ofXanthomonas vesicatoria , 1979 .

[72]  L. R. Nelson,et al.  Genetic variability in nuclear DNA in field populations of Stagonospora nodorum , 1994 .

[73]  J. Groth Effect of Sexual and Asexual Reproduction on Race Abundance in Cereal Rust Fungus Populations , 1982 .

[74]  I. Buddenhagen,et al.  Banana breeding: polyploidy, disease resistance and productivity. , 1986 .

[75]  S. Whisson,et al.  Evidence for outcrossing in Phytophthora sojae and linkage of a DNA marker to two avirulence genes , 1994, Current Genetics.

[76]  Cesare Gessler,et al.  Parasitic and Biological Fitness of Venturia inaequalis: Relationship to Disease Management Strategies. , 2001, Plant disease.

[77]  J. Martens,et al.  Genetics of Resistance to Rust in Cereals from a Canadian Perspective , 1989 .

[78]  Bruce D.L. Fitt,et al.  Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe , 2001 .

[79]  J. Kolmer Virulence and race dynamics of Puccinia recondita f. sp. tritici in Canada during 1956-1987 , 1989 .

[80]  L. Datnoff,et al.  Sudden shift in the prevalent race of Xanthomonas campestris pv. vesicatoria in pepper fields in southern Florida. , 1992 .

[81]  B. McDonald,et al.  THE POPULATION GENETICS OF SEPTORIA TRITICI (TELEOMORPH MYCOSPHAERELLA GRAMINICOLA) , 1995 .

[82]  I. Crute From breeding to cloning (and back again?): a case study with lettuce downy mildew. , 1992, Annual review of phytopathology.

[83]  Youyong Zhu,et al.  Genetic diversity and disease control in rice , 2000, Nature.

[84]  H. Leung,et al.  Evidence of parasexual exchange of DNA in the rice blast fungus challenges its exclusive clonality. , 1997, Phytopathology.

[85]  J. Grogan,et al.  New Races of Phytophthora sojae with Rps1-d Virulence. , 1997, Plant disease.

[86]  S. B. Goodwin,et al.  Origin of the A2 Mating Type of Phytophthora infestans Outside Mexico. , 1997, Phytopathology.

[87]  R. McIntosh,et al.  Anticipatory breeding for resistance to rust diseases in wheat. , 1997, Annual review of phytopathology.

[88]  R. O’Hara,et al.  Adaptation of powdery mildew populations to cereal varieties in relation to durable and non-durable resistance. , 1997 .

[89]  R. Singh,et al.  Genetics of adult-plant resistance of leaf rust in 'Frontana' and three CIMMYT wheats , 1992 .

[90]  J. Burdon,et al.  The population genetic structure of the rust fungus Melampsora lini as revealed by pathogenicity, isozyme and RFLP markers , 1995 .

[91]  S. B. Goodwin,et al.  Direct detection of gene flow and probable sexual reproduction of Phytophthora infestans in northern North America. , 1995 .

[92]  A. Chèvre,et al.  A Field Method for Evaluating the Potential Durability of New Resistance Sources: Application to the Leptosphaeria maculans-Brassica napus Pathosystem. , 2000, Phytopathology.

[93]  T. Gordon,et al.  The evolutionary biology of Fusarium oxysporum. , 1997, Annual review of phytopathology.

[94]  D. Rhoads,et al.  DNA fingerprinting to examine microgeographic variation in the Magnaporthe grisea (Pyricularia grisea) population in two rice fields in Arkansas , 1993 .

[95]  G. Kema,et al.  Genetic variation for virulence and resistance in the wheat-Mycosphaerella graminicola pathosystem. 11. Analysis of interactions between pathogen isolates and host cultivars , 1996 .

[96]  G. S. Khush,et al.  Breeding Rice for Resistance to Pests , 1992 .

[97]  R. Ploetz,et al.  Fusarium oxysporum f. sp. cubense Consists of a Small Number of Divergent and Globally Distributed Clonal Lineages. , 1997, Phytopathology.

[98]  P. Frey,et al.  Structure of Melampsora larici-populina populations on wild and cultivated poplar , 1997, European Journal of Plant Pathology.

[99]  K. B. Johnson,et al.  Management of fire blight: a case study in microbial ecology. , 1998, Annual review of phytopathology.

[100]  S. Kiyosawa Genetics and Epidemiological Modeling of Breakdown of Plant Disease Resistance , 1982 .

[101]  L. A. Brinkerhoff Variation in Xanthomonas Malvacearum and its Relation to Control , 1970 .

[102]  B. McDonald,et al.  High levels of gene flow and heterozygote excess characterize Rhizoctonia solani AG-1 IA (Thanatephorus cucumeris) from Texas. , 1999, Fungal genetics and biology : FG & B.

[103]  M. Lebrun,et al.  Genetic structure of the global population of banana black leaf streak fungus, Mycosphaerella fijiensis , 1996 .

[104]  Burdon Jj,et al.  Isozyme and virulence variation in asexually reproducing populations of Puccinia graminis and Puccinia recondita on wheat. , 1985 .

[105]  H. Förster,et al.  Phytophthora sojae races have arisen by clonal evolution and by rare outcrosses. , 1994 .

[106]  Maurice Victor Wiese,et al.  Compendium of wheat diseases , 1991 .

[107]  P. Bowyer,et al.  Septoria on Cereals: A Study of Pathosystems , 1999 .

[108]  J. Pataky,et al.  Resistance Genes in the rp1 Region of Maize Effective Against Puccinia sorghi Virulent on the Rp1-D Gene in North America. , 2001, Plant disease.

[109]  D. J. Samborski,et al.  Studies on asexual variation in the virulence of oat crown rust, Puccinia coronata f. sp. avenae, and wheat leaf rust, Puccinia recondita , 1969 .

[110]  B. McDonald,et al.  The Genetic Structure of Field Populations of Rhynchosporium secalis from Three Continents Suggests Moderate Gene Flow and Regular Recombination. , 2000, Phytopathology.

[111]  J. V. Leary Identification of the Races of Fusarium oxysporum f. sp. melonis Causing Wilt of Muskmelon in California , 1976 .

[112]  B. McDonald The population genetics of fungi: tools and techniques. , 1997, Phytopathology.

[113]  C. Mundt,et al.  Specific adaptation by Mycosphaerella graminicola to a resistant wheat cultivar , 2000 .

[114]  J. Mes,et al.  Foxy: an active family of short interspersed nuclear elements from Fusarium oxysporum , 2000, Molecular and General Genetics MGG.

[115]  B. McDonald,et al.  Sexual reproduction plays a major role in the genetic structure of populations of the fungus Mycosphaerella graminicola. , 1996, Genetics.

[116]  H. Leung,et al.  Relationship between Phylogeny and Pathotype for the Bacterial Blight Pathogen of Rice , 1994, Applied and environmental microbiology.

[117]  J. Dangl,et al.  Common and Contrasting Themes of Plant and Animal Diseases , 2001, Science.

[118]  K. Świeżyński,et al.  Resistance to Phytophthora infestans in Potato Genotypes Originating from Wild Species , 1991 .

[119]  C. Gessler,et al.  Subdivision and genetic structure of four populations of Venturia inaequalis in Switzerland , 1997, European Journal of Plant Pathology.

[120]  T. Hsiang,et al.  Variability in the highly virulent type of Leptosphaeria maculans within and between oilseed rape fields , 1997 .