A fast algorithm on average for solving the Hamilton Cycle problem

We present CertifyHAM, an algorithm which takes as input a graph G and either finds a Hamilton cycle of G or it outputs that such a cycle does not exist. If G ∼ G(n, p) and p ≥ 5000 n then the expected running time of CertifyHAM is O( p ). This improves upon previous results due to Gurevich and Shelah, Thomason and Alon and Krivelevich.

[1]  Michael Anastos,et al.  Hamilton cycles in random graphs with minimum degree at least 3: An improved analysis , 2020, Random Struct. Algorithms.

[2]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[3]  Richard Bellman,et al.  Dynamic Programming Treatment of the Travelling Salesman Problem , 1962, JACM.

[4]  Michael Anastos,et al.  A scaling limit for the length of the longest cycle in a sparse random graph , 2021, J. Comb. Theory, Ser. B.

[5]  Alan Frieze,et al.  Hamilton Cycles in Random Graphs: a bibliography , 2019, 1901.07139.

[6]  Michael Krivelevich,et al.  Finding a Hamilton cycle fast on average using rotations and extensions , 2019, Random Struct. Algorithms.

[7]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[8]  Angelika Steger,et al.  An O(n) time algorithm for finding Hamilton cycles with high probability , 2020, ITCS.

[9]  Saharon Shelah,et al.  Expected Computation Time for Hamiltonian Path Problem , 1987, SIAM J. Comput..

[10]  Michael Anastos,et al.  Fast algorithms for solving the Hamilton Cycle problem with high probability , 2021, SODA.

[11]  Andrew Thomason A simple linear expected time algorithm for finding a hamilton path , 1989, Discret. Math..

[12]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[13]  János Komlós,et al.  Limit distribution for the existence of Hamiltonian cycles in a random graph , 2006, Discret. Math..

[14]  Luca Trevisan Average-case Complexity , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[15]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[16]  Richard M. Karp,et al.  Dynamic programming meets the principle of inclusion and exclusion , 1982, Oper. Res. Lett..

[17]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.