Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems

The use of non-Hamiltonian dynamical systems to perform molecular dynamics simulation studies is becoming standard. However, the lack of a sound statistical mechanical foundation for non-Hamiltonian systems has caused numerous misconceptions about the phase space distribution functions generated by these systems to appear in the literature. Recently, a rigorous classical statistical mechanical theory of non-Hamiltonian systems has been derived, [M. E. Tuckerman, et al., Europhys. Lett. 45, 149 (1999)]. In this paper, the new theoretical formulation is employed to develop the non-Hamiltonian generalization of the usual Hamiltonian based statistical mechanical phase space principles. In particular, it is shown how the invariant phase space measure and the complete sets of conservation laws of the dynamical system can be combined with the generalized Liouville equation for non-Hamiltonian systems to produce a well defined expression for the phase space distribution function. The generalization provides a sys...

[1]  R. Aris Vectors, Tensors and the Basic Equations of Fluid Mechanics , 1962 .

[2]  B. Berne,et al.  Molecular Reorientation in Liquids and Gases , 1968 .

[3]  M. Fixman Classical statistical mechanics of constraints: a theorem and application to polymers. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Harold A. Scheraga,et al.  On the Use of Classical Statistical Mechanics in the Treatment of Polymer Chain Conformation , 1976 .

[5]  William G. Hoover,et al.  Lennard-Jones triple-point bulk and shear viscosities. Green-Kubo theory, Hamiltonian mechanics, and nonequilibrium molecular dynamics , 1980 .

[6]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[7]  Giovanni Ciccotti,et al.  Introduction of Andersen’s demon in the molecular dynamics of systems with constraints , 1983 .

[8]  Ann K. Stehney,et al.  Geometrical Methods of Mathematical Physics by Bernard F. Schutz , 1980 .

[9]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[10]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[11]  Denis J. Evans,et al.  Non-Newtonian molecular dynamics , 1984 .

[12]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[13]  M. Levitt,et al.  Protein normal-mode dynamics: trypsin inhibitor, crambin, ribonuclease and lysozyme. , 1985, Journal of molecular biology.

[14]  J. Waldram,et al.  The theory of thermodynamics , 1985 .

[15]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[16]  Denis J. Evans,et al.  Constrained molecular dynamics: Simulations of liquid alkanes with a new algorithm , 1986 .

[17]  J. D. Ramshaw Remarks on entropy and irreversibility in non-hamiltonian systems , 1986 .

[18]  Hoover,et al.  Constant-pressure equations of motion. , 1986, Physical review. A, General physics.

[19]  S. Nosé,et al.  An extension of the canonical ensemble molecular dynamics method , 1986 .

[20]  F. Verhulst Nonlinear Differential Equations and Dynamical Systems , 1989 .

[21]  G. Ciccotti,et al.  Constrained reaction coordinate dynamics for the simulation of rare events , 1989 .

[22]  Alex Friedman,et al.  Long-time behaviour of numerically computed orbits: small and intermediate timestep analysis of one-dimensional systems , 1991 .

[23]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[24]  Cho,et al.  Constant-temperature molecular dynamics with momentum conservation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  B. Berne,et al.  Efficient molecular dynamics and hybrid Monte Carlo algorithms for path integrals , 1993 .

[26]  G. Ciccotti,et al.  Hoover NPT dynamics for systems varying in shape and size , 1993 .

[27]  Glenn J. Martyna,et al.  Molecular dynamics simulations of a protein in the canonical ensemble , 1993 .

[28]  Martyna Remarks on "Constant-temperature molecular dynamics with momentum conservation" , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[30]  Michele Parrinello,et al.  Efficient and general algorithms for path integral Car–Parrinello molecular dynamics , 1996 .

[31]  Mark E. Tuckerman,et al.  Explicit reversible integrators for extended systems dynamics , 1996 .

[32]  M. Klein,et al.  TOWARD A STATISTICAL THERMODYNAMICS OF STEADY STATES , 1997 .

[33]  M. Klein,et al.  Modified nonequilibrium molecular dynamics for fluid flows with energy conservation , 1997 .

[34]  M. Klein,et al.  Response to “Comment on ‘Modified nonequilibrium molecular dynamics for fluid flows with energy conservation’ ” [J. Chem. Phys. 108, 4351 (1998)] , 1998 .

[35]  Michiel Sprik,et al.  Free energy from constrained molecular dynamics , 1998 .

[36]  M. Klein,et al.  Tuckerman et al. reply , 1998 .

[37]  W. Hoover Liouville's theorems, Gibbs' entropy, and multifractal distributions for nonequilibrium steady states , 1998 .

[38]  M. Tuckerman,et al.  On the classical statistical mechanics of non-Hamiltonian systems , 1999 .

[39]  Mark E. Tuckerman,et al.  Molecular dynamics algorithms for path integrals at constant pressure , 1999 .

[40]  Wm. G. Hoover The statistical thermodynamics of steady states , 1999 .

[41]  M. Tuckerman,et al.  Generalized Gaussian moment thermostatting: A new continuous dynamical approach to the canonical ensemble , 2000 .

[42]  Melchionna Constrained systems and statistical distribution , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.