Outsourcing of Verifiable Composite Modular Exponentiations

Modular exponentiation as a basic operation is widely used in discrete-log based cryptographic protocols. Most research has been made for outsourcing exponentiation modular a prime, works for outsourcing composite modular exponentiation are rare. In this paper, we propose two new secure outsourcing protocols for verifiable composite modular exponentiation and batch composite modular exponentiations respectively. We analyze the security and complexity of the protocols. Ours are more efficient.

[1]  Martín Abadi,et al.  On hiding information from an oracle , 1987, STOC '87.

[2]  Eugene H. Spafford,et al.  Secure outsourcing of scientific computations , 2001, Adv. Comput..

[3]  Mihir Bellare,et al.  Fast Batch Verification for Modular Exponentiation and Digital Signatures , 1998, IACR Cryptol. ePrint Arch..

[4]  Yevgeniy Vahlis,et al.  Verifiable Delegation of Computation over Large Datasets , 2011, IACR Cryptol. ePrint Arch..

[5]  Craig Gentry,et al.  Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers , 2010, CRYPTO.

[6]  David Chaum,et al.  Wallet Databases with Observers , 1992, CRYPTO.

[7]  G. Edward Suh,et al.  Speeding up Exponentiation using an Untrusted Computational Resource , 2006, Des. Codes Cryptogr..

[8]  Jianfeng Ma,et al.  New Algorithms for Secure Outsourcing of Modular Exponentiations , 2014, IEEE Trans. Parallel Distributed Syst..

[9]  Anna Lysyanskaya,et al.  How to Securely Outsource Cryptographic Computations , 2005, TCC.

[10]  Vinod Vaikuntanathan,et al.  How to Delegate and Verify in Public: Verifiable Computation from Attribute-based Encryption , 2012, IACR Cryptol. ePrint Arch..

[11]  Jianfeng Ma,et al.  New Algorithms for Secure Outsourcing of Modular Exponentiations , 2012, IEEE Transactions on Parallel and Distributed Systems.

[12]  Jonathan Katz,et al.  Multi-Client Non-interactive Verifiable Computation , 2013, TCC.

[13]  Elaine Shi,et al.  Signatures of Correct Computation , 2013, TCC.

[14]  Mikhail J. Atallah,et al.  Private and Cheating-Free Outsourcing of Algebraic Computations , 2008, 2008 Sixth Annual Conference on Privacy, Security and Trust.

[15]  Matthew Green,et al.  Outsourcing the Decryption of ABE Ciphertexts , 2011, USENIX Security Symposium.

[16]  Peter de Rooij,et al.  On Schnorr’s preprocessing for digital signature schemes , 1997, Journal of Cryptology.

[17]  Mikhail J. Atallah,et al.  Securely outsourcing linear algebra computations , 2010, ASIACCS '10.