Temporal limits on the rise in postsynaptic calcium required for the induction of long-term potentiation

[1]  G. Collingridge,et al.  Thapsigargin blocks the induction of long-term potentiation in rat hippocampal slices , 1992, Neuroscience Letters.

[2]  J. Connor,et al.  Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses , 1991, Nature.

[3]  Robert C. Malenka,et al.  Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus , 1991, Neuron.

[4]  Y. Ben-Ari,et al.  Novel form of long-term potentiation produced by a K+channel blocker in the hippocampus , 1991, Nature.

[5]  Lawrence M. Grover,et al.  Two components of long-term potentiation induced by different patterns of afferent activation , 1990, Nature.

[6]  T. H. Brown,et al.  Biophysical model of a Hebbian synapse. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[7]  D. Tank,et al.  Postsynaptic NMDA receptor-mediated calcium accumulation in hippocampal CAl pyramidal cell dendrites , 1990, Nature.

[8]  W. Levy,et al.  Insights into associative long-term potentiation from computational models of NMDA receptor-mediated calcium influx and intracellular calcium concentration changes. , 1990, Journal of neurophysiology.

[9]  R. Tsien,et al.  Biologically Useful Chelators That Take Up Ca2+ Upon Illumination. , 1990 .

[10]  Arnold R. Kriegstein,et al.  Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex , 1989, Journal of Neuroscience Methods.

[11]  R. Anwyl,et al.  The role of N-methyl-d-aspartate receptors in the generation of short-term potentiation in the rat hippocampus , 1989, Brain Research.

[12]  R. Tsien,et al.  Biologically useful chelators that take up calcium(2+) upon illumination , 1989 .

[13]  R. Tsien,et al.  Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. , 1989, Science.

[14]  R. Nicoll,et al.  An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation , 1989, Nature.

[15]  J. Stull,et al.  Cytoplasmic Ca2+ is a primary determinant for myosin phosphorylation in smooth muscle cells. , 1989, The Journal of biological chemistry.

[16]  Graham L. Collingridge,et al.  Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation , 1989, Nature.

[17]  I. Módy,et al.  Dantrolene-Na (Dantrium) blocks induction of long-term potentiation in hippocampal slices , 1989, Neuroscience Letters.

[18]  H. Wigström,et al.  Physiological mechanisms underlying long-term potentiation , 1988, Trends in Neurosciences.

[19]  R S Zucker,et al.  Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. , 1988, Science.

[20]  J. Stull,et al.  Biochemical events associated with activation of smooth muscle contraction. , 1988, The Journal of biological chemistry.

[21]  L. Nowak,et al.  The role of divalent cations in the N‐methyl‐D‐aspartate responses of mouse central neurones in culture. , 1988, The Journal of physiology.

[22]  R K Wong,et al.  Sustained dendritic gradients of Ca2+ induced by excitatory amino acids in CA1 hippocampal neurons. , 1988, Science.

[23]  M. Mayer,et al.  Permeation and block of N‐methyl‐D‐aspartic acid receptor channels by divalent cations in mouse cultured central neurones. , 1987, The Journal of physiology.

[24]  H. Miyakawa,et al.  Requirement of extracellular Ca2+ after tetanus for induction of long-term potentiation in guinea pig hippocampal slices , 1987, Neuroscience Letters.

[25]  C. Stevens,et al.  Glutamate activates multiple single channel conductances in hippocampal neurons , 1987, Nature.

[26]  P. Adams,et al.  Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. , 1986, Journal of neurophysiology.

[27]  G. Lynch,et al.  Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation , 1986, Brain Research.

[28]  P. Greengard,et al.  Evidence that the major postsynaptic density protein is a component of a Ca2+/calmodulin-dependent protein kinase. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M K Bennett,et al.  Biochemical and immunochemical evidence that the "major postsynaptic density protein" is a subunit of a calmodulin-dependent protein kinase. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. Lynch,et al.  Intracellular injections of EGTA block induction of hippocampal long-term potentiation , 1983, Nature.

[31]  R Y Tsien,et al.  Calcium channels, stores, and oscillations. , 1990, Annual review of cell biology.

[32]  R. Miller,et al.  Measurement of passive membrane parameters with whole-cell recording from neurons in the intact amphibian retina. , 1989, Journal of neurophysiology.

[33]  Stephen J. Smith,et al.  NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones , 1986, Nature.

[34]  G. Collingridge,et al.  Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus. , 1983, The Journal of physiology.