A 3.3 V 72.2 Mbit/s 802.11n WLAN transformer-based power amplifier in 65 nm CMOS
暂无分享,去创建一个
[1] J. Long,et al. A Q-factor enhancement technique for MMIC inductors , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).
[2] Antônio Carlos M. de Queiroz. Generalized LC multiple resonance networks , 2002, ISCAS.
[3] H. Knapp,et al. Lumped and distributed lattice-type LC-baluns , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).
[4] Richard Chang,et al. A Fully Integrated RF Front-End with Independent RX/TX Matching and +20dBm Output Power for WLAN Applications , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.
[5] A. Alvandpour,et al. A 72.2Mbit/s Transformer-Based Power Amplifier in 65nm CMOS for 2.4GHz 802.11n WLAN , 2008, 2008 NORCHIP.
[6] R. Mavaddat. Network Scattering Parameters , 1996, Advanced Series in Circuits and Systems.
[7] Bruce A. Wooley,et al. A Digitally Modulated Polar CMOS PA with 20MHz Signal BW , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.
[8] D. Pozar. Microwave Engineering , 1990 .
[9] S. C. Cripps,et al. RF Power Amplifiers for Wireless Communications , 1999 .
[10] J.R. Long,et al. Monolithic transformers for silicon RF IC design , 2000, IEEE Journal of Solid-State Circuits.
[11] D. Harame,et al. Lateral microwave transformers and inductors implemented in a Si/SiGe HBT process , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).
[12] Mark Ruberto,et al. A 1x2 MIMO Multi-Band CMOS Transceiver with an Integrated Front-End in 90nm CMOS for 802.11a/g/n WLAN Applications , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.
[13] Roberto Sorrentino,et al. Modeling and characterization of the bonding-wire interconnection , 2001 .
[14] A. Litwin,et al. Overlooked interfacial silicide-polysilicon gate resistance in MOS transistors , 2001 .
[15] H.S. Bennett,et al. Device and technology evolution for Si-based RF integrated circuits , 2005, IEEE Transactions on Electron Devices.
[16] Ray Bert,et al. Book Review: \IBridgescape: The Art of Designing Bridges\N by Frederick Gottemoeller, Hoboken, New Jersey: John Wiley & Sons, Inc., 2004 , 2005 .
[17] Arpad L. Scholtz,et al. Modeling of monolithic lumped planar transformers up to 20 GHz , 2001, Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169).
[18] Ali Hajimiri,et al. Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .
[19] N. Zimmermann,et al. Power amplifiers in 0.13 μm CMOS for DECT: a comparison between two different architectures , 2007, 2007 IEEE International Workshop on Radio-Frequency Integration Technology.
[20] Bumman Kim,et al. A single-chip linear CMOS power amplifier for 2.4 GHz WLAN , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.
[21] Steve C. Cripps,et al. RF Power Amplifiers for Wireless Communications, Second Edition (Artech House Microwave Library (Hardcover)) , 2006 .
[22] Joy Laskar,et al. Modeling and Design Techniques for RF Power Amplifiers , 2008 .
[23] D. Linten,et al. A 5 kV HBM transformer-based ESD protected 5-6 GHz LNA , 2007, 2007 IEEE Symposium on VLSI Circuits.
[24] J. Scholvin,et al. Fundamental Power and Frequency Limits of Deeply-Scaled CMOS for RF Power Applications , 2006, 2006 International Electron Devices Meeting.
[25] M. Ruberto,et al. A reliability-aware RF power amplifier design for CMOS radio chip integration , 2008, 2008 IEEE International Reliability Physics Symposium.
[26] Michel Steyaert,et al. RF Power Amplifiers for Mobile Communications , 2006 .