The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer

[1] Spectra taken by the Mars Global Surveyor Thermal Emission Spectrometer (TES) have been used to monitor the latitude, longitude, and seasonal dependence of water vapor for over one full Martian year (March 1999 to March 2001). A maximum in water vapor abundance is observed at high latitudes during midsummer in both hemispheres, reaching a maximum value of ∼100 pr-μm in the north and ∼50 pr-μm in the south. Low water vapor abundance (<5 pr-μm) is observed at middle and high latitudes in the fall and winter of both hemispheres. There are large differences in the hemispheric (north versus south) and seasonal (perihelion versus aphelion) behavior of water vapor. The latitudinal and seasonal dependence of the decay of the northern summer water vapor maximum implies cross-equatorial transport of water to the southern hemisphere, while there is little or no corresponding transport during the decay of the southern hemisphere summer maximum. The latitude-longitude dependence of annually averaged water vapor (corrected for topography) has a significant positive correlation with albedo and significant negative correlations with thermal inertia and surface pressure. Comparison of TES results with those retrieved from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) experiments [Jakosky and Farmer, 1982] shows some similar features but also many significant differences. The southern hemisphere maximum observed by TES was not observed by MAWD, and the large latitudinal gradient in annually averaged water vapor observed by MAWD does not appear in the TES results.

[1]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[2]  Oleg Korablev,et al.  Vertical Distribution of Water in the Near-Equatorial Troposphere of Mars: Water Vapor and Clouds , 1997 .

[3]  D. L. Anderson,et al.  Thermal emission spectrometer experiment: Mars Observer mission , 1992 .

[4]  J. Bandfield,et al.  Observations of Martian ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer: The first Martian year , 2001 .

[5]  R. Clark,et al.  Results from the Mars Global Surveyor Thermal Emission Spectrometer. , 1998, Science.

[6]  T. Encrenaz,et al.  ISO Observations of Mars: An Estimate of the Water Vapor Vertical Distribution and the Surface Emissivity , 2000 .

[7]  R. M. Haberle,et al.  Diurnal variations in optical depth at Mars , 1989 .

[8]  D. Hunten,et al.  Martian water vapor, 1988–1995 , 1996 .

[9]  R. J. Reid,et al.  Results from the Mars Pathfinder camera. , 1997, Science.

[10]  David P. Hinson,et al.  Initial results from radio occultation measurements with Mars Global Surveyor , 1999 .

[11]  R. E. Hill,et al.  Water Vapor Abundances over Mars North High Latitude Regions: 1996–1999 , 2001 .

[12]  David Crisp,et al.  Near-infrared light from Venus' nightside - A spectroscopic analysis , 1993 .

[13]  J. Bandfield,et al.  Spectral data set factor analysis and end-member recovery: Application to analysis of Martian atmospheric particulates , 2000 .

[14]  H. Spinrad,et al.  Letter to the Editor: the Detection of Water Vapor on Mars. , 1963 .

[15]  N. Thomas,et al.  Measurements of the atmospheric water vapor on Mars by the Imager for Mars Pathfinder , 1999 .

[16]  T. Encrenaz,et al.  ISO Observations of Mars: a determination of the water vapor vertical distribution and the surface activity , 1999 .

[17]  John C. Pearl,et al.  Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution , 2001 .

[18]  D. W. Davies The vertical distribution of Mars water vapor , 1979 .

[19]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[20]  M. DiSanti,et al.  Mapping of ozone and water in the atmosphere of Mars near the 1997 aphelion , 2002 .

[21]  Dudley A. Williams,et al.  Infrared Transmission of Synthetic Atmospheres.* I. Instrumentation , 1956 .

[22]  Joshua L. Bandfield,et al.  A Global View of Martian Surface Compositions from MGS-TES , 2000 .

[23]  Noelle A. Scott,et al.  Management and study of spectroscopic information: The GEISA program , 1992 .

[24]  M. Gurwell,et al.  Submillimeter Wave Astronomy Satellite Observations of the Martian Atmosphere: Temperature and Vertical Distribution of Water Vapor , 2000 .

[25]  John C. Pearl,et al.  Mars Global Surveyor Thermal Emission Spectrometer (TES) observations of dust opacity during aerobraking and science phasing , 2000 .

[26]  T. Encrenaz,et al.  Minor constituents in the Martian atmosphere from the ISM/Phobos experiment. , 1992, Icarus.

[27]  Hans J. Liebe,et al.  Accurate Foreign‐Gas‐Broadening Parameters of the 22‐GHz H2O Line from Refraction Spectroscopy , 1969 .

[28]  Duane O. Muhleman,et al.  WATER VAPOR SATURATION AT LOW ALTITUDES AROUND MARS APHELION : A KEY TO MARS CLIMATE ? , 1996 .

[29]  Terry Z. Martin,et al.  Thermal infrared opacity of the Mars atmosphere , 1986 .

[30]  J. Pollack,et al.  The dark side of Venus: near-infrared images and spectra from the Anglo-Australian observatory. , 1991, Science.

[31]  Peter Guttorp,et al.  The Martian annual atmospheric pressure cycle: Years without great dust storms , 1993 .

[32]  Dudley A. Williams,et al.  Infrared Transmission of Synthetic Atmospheres.* V. Absorption Laws for Overlapping Bands , 1956 .

[33]  Bayesian Rcvr,et al.  I I I I I I I I I , 1972 .

[34]  Ralph A. Kahn,et al.  Properties of aerosols in the Martian atmosphere, as inferred from Viking lander imaging data , 1977 .

[35]  Robert R. Gamache,et al.  CO2-broadening of water-vapor lines , 1995 .

[36]  H. Spinrad,et al.  THE DETECTION OF WATER VAPOR ON MARS , 1963 .

[37]  R. West,et al.  THE CORRELATED-k METHOD FOR RADIATION CALCULATIONS IN NONHOMOGENEOUS ATMOSPHERES , 1989 .

[38]  David E. Smith,et al.  The global topography of Mars and implications for surface evolution. , 1999, Science.

[39]  D. Hunten,et al.  Meridional Martian water abundance profiles during the 1988-1989 season , 1991 .

[40]  Robert M. Haberle,et al.  Sublimation and transport of water from the north residual polar cap on Mars , 1990 .

[41]  D. W. Davies,et al.  Mars: Water vapor observations from the Viking orbiters , 1977 .

[42]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[43]  R. A. Hanel,et al.  Investigation of the Martian environment by infrared spectroscopy on Mariner 9 , 1972 .

[44]  C. B. Farmer,et al.  The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking Atmospheric Water Detector Experiment , 1982 .

[45]  B. Jakosky The seasonal cycle of water on Mars , 1985 .

[46]  B. Jakosky,et al.  Comparison of ground-based and Viking Orbiter measurements of Martian water vapor: Variability of the seasonal cycle , 1984 .

[47]  E. Barker,et al.  Mars: Detection of Atmospheric Water Vapor during the Southern Hemisphere Spring and Summer Season , 1970, Science.

[48]  R. M. Henry,et al.  The annual cycle of pressure on Mars measured by Viking landers 1 and 2 , 1980 .

[49]  D. Muhleman,et al.  Mapping Mars water vapor with the Very Large Array , 1992 .

[50]  R. Haberle,et al.  The seasonal behavior of water on Mars , 1992 .

[51]  M. Richardson,et al.  New dust opacity mapping from Viking infrared thermal mapper data , 1993 .