Jump information criterion for statistical inference in estimating discontinuous curves
暂无分享,去创建一个
[1] B. M. Pötscher,et al. MODEL SELECTION AND INFERENCE: FACTS AND FICTION , 2005, Econometric Theory.
[2] P. Hall,et al. Edge-preserving and peak-preserving smoothing , 1992 .
[3] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[4] A. Munk,et al. Multiscale change point inference , 2013, 1301.7212.
[5] P. Qiu. Estimation of the number of jumps of the jump regression functions , 1994 .
[6] P. Qiu,et al. ESTIMATION OF JUMP REGRESSION FUNCTION , 1991 .
[7] Lijian Yang,et al. A jump-detecting procedure based on spline estimation , 2011 .
[8] Ja-Yong Koo,et al. Spline Estimation of Discontinuous Regression Functions , 1997 .
[9] Irène Gijbels,et al. Bandwidth Selection for Changepoint Estimation in Nonparametric Regression , 2004, Technometrics.
[10] B. Efron. The Estimation of Prediction Error , 2004 .
[11] John Alan McDonald,et al. Smoothing with split linear fits , 1986 .
[12] Alexis Hannart,et al. An Improved Bayesian Information Criterion for Multiple Change-Point Models , 2012, Technometrics.
[13] Y. Yin,et al. Detection of the number, locations and magnitudes of jumps , 1988 .
[14] H. Müller. CHANGE-POINTS IN NONPARAMETRIC REGRESSION ANALYSIS' , 1992 .
[15] C. Stein. Estimation of the Mean of a Multivariate Normal Distribution , 1981 .
[16] C. Loader. CHANGE POINT ESTIMATION USING NONPARAMETRIC REGRESSION , 1996 .
[17] M. Wand. Local Regression and Likelihood , 2001 .
[18] Tests for continuity of regression functions , 2007 .
[19] Peihua Qiu. Image Processing and Jump Regression Analysis: Qiu/Image , 2005 .
[20] G. Grégoire,et al. Change point estimation by local linear smoothing , 2002 .
[21] Yi-Ching Yao. Estimating the number of change-points via Schwarz' criterion , 1988 .
[22] Anestis Antoniadis,et al. Detecting Abrupt Changes by Wavelet Methods , 2002 .
[23] Cheolwoo Park,et al. Kernel estimation of discontinuous regression functions , 2000 .
[24] Brian S. Yandell,et al. A local polynomial jump-detection algorithm in nonparametric regression , 1998 .
[25] Guohua Pan,et al. Local Regression and Likelihood , 1999, Technometrics.
[26] Peihua Qiu,et al. Jump-Preserving Regression and Smoothing using Local Linear Fitting: A Compromise , 2007 .
[27] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[28] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[29] David O Siegmund,et al. A Modified Bayes Information Criterion with Applications to the Analysis of Comparative Genomic Hybridization Data , 2007, Biometrics.
[30] Christine H. Müller. Robust estimators for estimating discontinuous functions , 2002 .
[31] P. Qiu. Image processing and jump regression analysis , 2005 .
[32] Robert A. Lordo. Image Processing and Jump Regression Analysis , 2006, Technometrics.
[33] C. Chu,et al. Kernel-Type Estimators of Jump Points and Values of a Regression Function , 1993 .
[34] Peihua Qiu,et al. Jump Detection in a Regression Curve and Its Derivative , 2009, Technometrics.
[35] Yazhen Wang. Jump and sharp cusp detection by wavelets , 1995 .