Estimation of hyper-parameters for a hierarchical model of combined cortical and extra-brain current sources in the MEG inverse problem

[1]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[2]  Masa-aki Sato,et al.  Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior , 2012, NeuroImage.

[3]  R N Vigário,et al.  Extraction of ocular artefacts from EEG using independent component analysis. , 1997, Electroencephalography and clinical neurophysiology.

[4]  J. Lekkala,et al.  Comparative study of the normal vector magnetocardiogram and vector electrocardiogram. , 1986, Journal of electrocardiology.

[5]  W. R. Miles The Steady Polarity Potential of the Human Eye. , 1939, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[7]  T. Sejnowski,et al.  Removing electroencephalographic artifacts by blind source separation. , 2000, Psychophysiology.

[8]  A. S. Ferguson,et al.  A complete linear discretization for calculating the magnetic field using the boundary element method , 1994, IEEE Transactions on Biomedical Engineering.

[9]  M. Kawato,et al.  Gaussian mixture prior distribution on artifactual current for MEG inverse problem , 2010, Neuroscience Research.

[10]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[11]  Masa-aki Sato,et al.  Hierarchical Bayesian estimation for MEG inverse problem , 2004, NeuroImage.

[12]  Masa-aki Sato,et al.  Premotor cortex mediates perceptual performance , 2010, NeuroImage.

[13]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[14]  Masa-aki Sato,et al.  A hierarchical Bayesian method to resolve an inverse problem of MEG contaminated with eye movement artifacts , 2009, NeuroImage.

[15]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[16]  Masa-aki Sato,et al.  Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals , 2008, NeuroImage.

[17]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[18]  P. Rossini,et al.  Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals , 2004, Clinical Neurophysiology.

[19]  S. Baillet,et al.  Localization of realistic cortical activity in MEG using current multipoles , 2004, NeuroImage.

[20]  Yasuharu Koike,et al.  Reconstruction of flexor and extensor muscle activities from electroencephalography cortical currents , 2012, NeuroImage.

[21]  Erkki Oja,et al.  Independent component approach to the analysis of EEG and MEG recordings , 2000, IEEE Transactions on Biomedical Engineering.

[22]  Masa-aki Sato,et al.  The effects of feature attention on prestimulus cortical activity in the human visual system. , 2008, Cerebral cortex.

[23]  Masa-aki Sato,et al.  Reconstruction of two-dimensional movement trajectories from selected magnetoencephalography cortical currents by combined sparse Bayesian methods , 2011, NeuroImage.

[24]  D. Hubel,et al.  The role of fixational eye movements in visual perception , 2004, Nature Reviews Neuroscience.

[25]  J. Haxby,et al.  Functional anatomy of pursuit eye movements in humans as revealed by fMRI. , 1999, Journal of neurophysiology.

[26]  T. Katila,et al.  Magnetic fields produced by the human eye (invited) , 1981 .

[27]  M. Kawato,et al.  Isolating cortical activities from artifacts in simulated EEG data during smooth pursuit eye movements , 2011, Neuroscience Research.

[28]  K. Doya,et al.  Anterior and superior lateral occipito-temporal cortex responsible for target motion prediction during overt and covert visual pursuit , 2006, Neuroscience Research.