Nanoindentation behavior and deformed microstructures in coarse-grained magnesium alloys
暂无分享,去创建一个
[1] K. Kumar,et al. [0 0 0 1] Compression response at room temperature of single-crystal magnesium , 2012 .
[2] C. Schuh,et al. High-strain-rate nanoindentation behavior of fine-grained magnesium alloys , 2012 .
[3] D. Raabe,et al. The relation between ductility and stacking fault energies in Mg and Mg–Y alloys , 2012 .
[4] S. Agnew,et al. Role of Solute in the Texture Modification During Hot Deformation of Mg-Rare Earth Alloys , 2012, Metallurgical and Materials Transactions A.
[5] C. Schuh,et al. Effect of solid solution elements on nanoindentation hardness, rate dependence, and incipient plasticity in fine grained magnesium alloys , 2011 .
[6] Yuntian Zhu,et al. Basal‐Plane Stacking‐Fault Energies of Mg: A First‐Principles Study of Li‐ and Al‐Alloying Effects , 2011 .
[7] I. Beyerlein,et al. An atomic and probabilistic perspective on twin nucleation in Mg , 2010 .
[8] K. T. Ramesh,et al. Microcompression of single-crystal magnesium , 2010 .
[9] E. Lilleodden. Microcompression study of Mg (0 0 0 1) single crystal , 2010 .
[10] G. Constantinides,et al. Quantitative Impact Testing of Energy Dissipation at Surfaces , 2009 .
[11] M. Barnett,et al. The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility , 2008 .
[12] C. Schuh,et al. The Hall–Petch breakdown at high strain rates: Optimizing nanocrystalline grain size for impact applications , 2008 .
[13] M. Barnett. A rationale for the strong dependence of mechanical twinning on grain size , 2008 .
[14] S. Agnew,et al. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B , 2005 .
[15] M. Barnett,et al. Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn , 2004 .
[16] P. Rodriguez. Grain size dependence of the activation parameters for plastic deformation: Influence of crystal structure, slip system, and rate-controlling dislocation mechanism , 2004 .
[17] J. Bohlen,et al. Cold rolling textures in AZ31 wrought magnesium alloy , 2004 .
[18] K. Maruyama,et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys , 2003 .
[19] C. Tomé,et al. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling , 2003 .
[20] Marc A. Meyers,et al. THE ONSET OF TWINNING IN METALS: A CONSTITUTIVE DESCRIPTION , 2001 .
[21] P. Prangnell,et al. Tensile-compressive yield asymmetries in high strength wrought magnesium alloys , 1994 .
[22] G. Schoeck,et al. Prismatic glide in divalent h.c.p. metals , 1991 .
[23] Harold Margolin,et al. Polycrystalline strengtheningDurcissement de polycristauxVerfestigung im polykristallinen material , 1975 .
[24] J. Stohr,et al. Etude en microscopie electronique du glissement pyramidal {1122} 〈1123〉 dans le magnesium , 1972 .
[25] G. Schoeck,et al. On the rate-controlling mechanism for plastic flow of Mg crystals at low temperatures , 1961 .
[26] R. Reed-hill,et al. The crystallographic characteristics of fracture in magnesium single crystals , 1957 .
[27] R. Horiuchi,et al. Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis. , 1963 .