Nanoindentation behavior and deformed microstructures in coarse-grained magnesium alloys

[1]  K. Kumar,et al.  [0 0 0 1] Compression response at room temperature of single-crystal magnesium , 2012 .

[2]  C. Schuh,et al.  High-strain-rate nanoindentation behavior of fine-grained magnesium alloys , 2012 .

[3]  D. Raabe,et al.  The relation between ductility and stacking fault energies in Mg and Mg–Y alloys , 2012 .

[4]  S. Agnew,et al.  Role of Solute in the Texture Modification During Hot Deformation of Mg-Rare Earth Alloys , 2012, Metallurgical and Materials Transactions A.

[5]  C. Schuh,et al.  Effect of solid solution elements on nanoindentation hardness, rate dependence, and incipient plasticity in fine grained magnesium alloys , 2011 .

[6]  Yuntian Zhu,et al.  Basal‐Plane Stacking‐Fault Energies of Mg: A First‐Principles Study of Li‐ and Al‐Alloying Effects , 2011 .

[7]  I. Beyerlein,et al.  An atomic and probabilistic perspective on twin nucleation in Mg , 2010 .

[8]  K. T. Ramesh,et al.  Microcompression of single-crystal magnesium , 2010 .

[9]  E. Lilleodden Microcompression study of Mg (0 0 0 1) single crystal , 2010 .

[10]  G. Constantinides,et al.  Quantitative Impact Testing of Energy Dissipation at Surfaces , 2009 .

[11]  M. Barnett,et al.  The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility , 2008 .

[12]  C. Schuh,et al.  The Hall–Petch breakdown at high strain rates: Optimizing nanocrystalline grain size for impact applications , 2008 .

[13]  M. Barnett A rationale for the strong dependence of mechanical twinning on grain size , 2008 .

[14]  S. Agnew,et al.  Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B , 2005 .

[15]  M. Barnett,et al.  Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn , 2004 .

[16]  P. Rodriguez Grain size dependence of the activation parameters for plastic deformation: Influence of crystal structure, slip system, and rate-controlling dislocation mechanism , 2004 .

[17]  J. Bohlen,et al.  Cold rolling textures in AZ31 wrought magnesium alloy , 2004 .

[18]  K. Maruyama,et al.  The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys , 2003 .

[19]  C. Tomé,et al.  Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling , 2003 .

[20]  Marc A. Meyers,et al.  THE ONSET OF TWINNING IN METALS: A CONSTITUTIVE DESCRIPTION , 2001 .

[21]  P. Prangnell,et al.  Tensile-compressive yield asymmetries in high strength wrought magnesium alloys , 1994 .

[22]  G. Schoeck,et al.  Prismatic glide in divalent h.c.p. metals , 1991 .

[23]  Harold Margolin,et al.  Polycrystalline strengtheningDurcissement de polycristauxVerfestigung im polykristallinen material , 1975 .

[24]  J. Stohr,et al.  Etude en microscopie electronique du glissement pyramidal {1122} 〈1123〉 dans le magnesium , 1972 .

[25]  G. Schoeck,et al.  On the rate-controlling mechanism for plastic flow of Mg crystals at low temperatures , 1961 .

[26]  R. Reed-hill,et al.  The crystallographic characteristics of fracture in magnesium single crystals , 1957 .

[27]  R. Horiuchi,et al.  Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis. , 1963 .