EVE: A Tool for Temporal Equilibrium Analysis

We present EVE (Equilibrium Verification Environment), a formal verification tool for the automated analysis of temporal equilibrium properties of concurrent and multi-agent systems. In EVE, systems are modelled using the Simple Reactive Module Language (SRML) as a collection of independent system components (players/agents in a game) and players’ goals are expressed using Linear Temporal Logic (LTL) formulae. EVE can be used to automatically check the existence of pure strategy Nash equilibria in such concurrent and multi-agent systems and to verify which temporal logic properties are satisfied in the equilibria.

[1]  Michael Wooldridge,et al.  On the complexity of practical ATL model checking , 2006, AAMAS '06.

[2]  Kim G. Larsen,et al.  Computing Nash Equilibrium in Wireless Ad Hoc Networks: A Simulation-Based Approach , 2012, IWIGP.

[3]  Michael Wooldridge,et al.  Iterated Boolean Games for Rational Verification , 2017, AAMAS.

[4]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[5]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[6]  M. Wooldridge,et al.  Imperfect Information in Reactive Modules Games , 2016, KR.

[7]  Wang Yi,et al.  Uppaal in a nutshell , 1997, International Journal on Software Tools for Technology Transfer.

[8]  David K. Gifford,et al.  Weighted voting for replicated data , 1979, SOSP '79.

[9]  Michael Wooldridge,et al.  Reasoning about equilibria in game-like concurrent systems , 2014, Ann. Pure Appl. Log..

[10]  Michael Wooldridge,et al.  Nash Equilibrium and Bisimulation Invariance , 2019, Log. Methods Comput. Sci..

[11]  Michael Wooldridge,et al.  Rational Verification: From Model Checking to Equilibrium Checking , 2016, AAAI.

[12]  Michael Wooldridge,et al.  A Tool for the Automated Verification of Nash Equilibria in Concurrent Games , 2015, ICTAC.

[13]  Liuba Shrira,et al.  Providing high availability using lazy replication , 1992, TOCS.

[14]  N. Nisan Introduction to Mechanism Design (for Computer Scientists) , 2007 .

[15]  Romain Brenguier,et al.  PRALINE: A Tool for Computing Nash Equilibria in Concurrent Games , 2013, CAV.

[16]  Michael Wooldridge,et al.  Nash Equilibria in Concurrent Games with Lexicographic Preferences , 2017, IJCAI.

[17]  Michael Wooldridge,et al.  From model checking to equilibrium checking: Reactive modules for rational verification , 2016, Artif. Intell..

[18]  Thomas A. Henzinger,et al.  Alternating-time temporal logic , 1999 .

[19]  Michael Wooldridge,et al.  Iterated Boolean games , 2013, Inf. Comput..

[20]  Alessio Lomuscio,et al.  MCMAS-SLK: A Model Checker for the Verification of Strategy Logic Specifications , 2014, CAV.

[21]  Michael J. Fischer,et al.  Sacrificing serializability to attain high availability of data in an unreliable network , 1982, PODS.