Global exponential synchronization of fuzzy cellular neural networks with delays and reaction-diffusion terms

The global exponential synchronization for a class of fuzzy cellular neural networks with delays and reaction-diffusion terms is discussed. Some new sufficient conditions are obtained by using the Lyapunov functional method, many real parameters and inequality techniques. The result is also easy to check and plays an important role in the design and application of globally exponentially synchronization. Finally, an example is given to verify our results.

[1]  Louis M. Pecora,et al.  Synchronizing chaotic circuits , 1991 .

[2]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[3]  Toshimitsu Ushio SYNTHESIS OF SYNCHRONIZED CHAOTIC SYSTEMS BASED ON OBSERVERS , 1999 .

[4]  Teh-Lu Liao,et al.  Adaptive control and synchronization of Lorenz systems , 1999 .

[5]  Jinde Cao,et al.  Robust impulsive synchronization of coupled delayed neural networks with uncertainties , 2007 .

[6]  Zhang Yifeng,et al.  A secure communication scheme based on cellular neural network , 1997, 1997 IEEE International Conference on Intelligent Processing Systems (Cat. No.97TH8335).

[7]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[8]  Junguo Lu Global exponential stability and periodicity of reaction–diffusion delayed recurrent neural networks with Dirichlet boundary conditions , 2008 .

[9]  Jinde Cao,et al.  Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects , 2007 .

[10]  Jun-an Lu,et al.  Adaptive coupled synchronization among multi-Lorenz systems family ☆ , 2007 .

[11]  Saverio Mascolo,et al.  SYNCHRONIZING HIGH DIMENSIONAL CHAOTIC SYSTEMS VIA EIGENVALUE PLACEMENT WITH APPLICATION TO CELLULAR NEURAL NETWORKS , 1999 .

[12]  J. Suykens,et al.  Impulsive Synchronization of Chaotic Lur'e Systems by Measurement Feedback , 1998 .

[13]  Linshan Wang,et al.  Global exponential robust stability of reaction¿diffusion interval neural networks with time-varying delays , 2006 .

[14]  T. Kapitaniak,et al.  MONOTONE SYNCHRONIZATION OF CHAOS , 1996 .

[15]  Leon O. Chua,et al.  Fuzzy cellular neural networks: applications , 1996, 1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96).

[16]  Martin T. Hagan,et al.  Neural network design , 1995 .

[17]  Zhidong Teng,et al.  Global exponential synchronization in delayed reaction-diffusion cellular neural networks with the Dirichlet boundary conditions , 2010, Math. Comput. Model..

[18]  X. Shan,et al.  A linear feedback synchronization theorem for a class of chaotic systems , 2002 .

[19]  S. Mascolo,et al.  Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal , 1997 .

[20]  Xinzhi Liu,et al.  Application of Impulsive Synchronization to Communication Security , 2003 .

[21]  Ahmed Sadek Hegazi,et al.  Adaptive Synchronization for RÖssler and Chua's Circuit Systems , 2002, Int. J. Bifurc. Chaos.

[22]  Li Sheng,et al.  Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms , 2009 .

[23]  Er-Wei Bai,et al.  Sequential synchronization of two Lorenz systems using active control , 2000 .

[24]  Nebojša Vasović,et al.  Global stability of synchronization between delay-differential systems with generalized diffusive coupling , 2007 .

[25]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[26]  Jinde Cao,et al.  Synchronization of a class of delayed neural networks with reaction–diffusion terms☆ , 2007 .