Taylor collocation method for the numerical solution of the nonlinear Schrödinger equation using quintic B-spline basis

[1]  I. Dag,et al.  Taylor-Galerkin and Taylor-collocation methods for the numerical solutions of Burgers’ equation using B-splines , 2011 .

[2]  Murat Sari,et al.  A Taylor–Galerkin finite element method for the KdV equation using cubic B-splines , 2010 .

[3]  Alper Korkmaz,et al.  A differential quadrature algorithm for simulations of nonlinear Schrödinger equation , 2008, Comput. Math. Appl..

[4]  Fernando Vadillo,et al.  An exponential time differencing method for the nonlinear Schrödinger equation , 2008, Comput. Phys. Commun..

[5]  M. Mehra,et al.  Wavelet-Taylor Galerkin Method for the Burgers Equation , 2005 .

[6]  Mani Mehra,et al.  A WAVELET-TAYLOR GALERKIN METHOD FOR PARABOLIC AND HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS , 2005 .

[7]  Mark P. Robinson,et al.  The solution of nonlinear Schrödinger equations using orthogonal spline collocation , 1997 .

[8]  Graeme Fairweather,et al.  Orthogonal spline collocation methods for Schr\"{o}dinger-type equations in one space variable , 1994 .

[9]  L. Gardner,et al.  B-spline finite element studies of the non-linear Schrödinger equation , 1993 .

[10]  L. Gardner,et al.  Simulations of solitons using quadratic spline finite elements , 1991 .

[11]  John Argyris,et al.  An engineer's guide to soliton phenomena: Application of the finite element method , 1987 .

[12]  Ben M. Herbst,et al.  Numerical Experience with the Nonlinear Schrödinger Equation , 1985 .

[13]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[14]  John W. Miles,et al.  An Envelope Soliton Problem , 1981 .

[15]  A. Scott,et al.  The soliton: A new concept in applied science , 1973 .

[16]  İdris Dağ,et al.  A quadratic B-spline finite element method for solving nonlinear Schrödinger equation , 1999 .

[17]  J. Donea A Taylor–Galerkin method for convective transport problems , 1983 .

[18]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .