A new trust-region method with line search for solving symmetric nonlinear equations

A new trust-region method is proposed for symmetric nonlinear equations. In this given algorithm, if the trial step is unsuccessful, one line search will be used instead of repeatedly solving the subproblem of the normal trust-region method. Moreover, the global convergence is established under mild conditions by a new way. The quadratic convergence of the presented method is also proved. Numerical results show that the method is interesting for the given problems.

[1]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[2]  Yousef Saad,et al.  Convergence Theory of Nonlinear Newton-Krylov Algorithms , 1994, SIAM J. Optim..

[3]  Marcos Raydan,et al.  The Barzilai and Borwein Gradient Method for the Large Scale Unconstrained Minimization Problem , 1997, SIAM J. Optim..

[4]  Anderas Griewank The “global” convergence of Broyden-like methods with suitable line search , 1986, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[5]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[6]  Xiwen Lu,et al.  A new backtracking inexact BFGS method for symmetric nonlinear equations , 2008, Comput. Math. Appl..

[7]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .

[8]  Zengxin Wei,et al.  A nonmonotone adaptive trust-region algorithm for symmetric nonlinear equations , 2010 .

[9]  Xiwen Lu,et al.  BFGS trust-region method for symmetric nonlinear equations , 2009 .

[10]  R. D. Murphy,et al.  Iterative solution of nonlinear equations , 1994 .

[11]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[12]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[13]  Nicholas I. M. Gould,et al.  Trust Region Methods , 2000, MOS-SIAM Series on Optimization.

[14]  José Mario Martínez,et al.  Comparing Algorithms for Solving Sparse Nonlinear Systems of Equations , 1992, SIAM J. Sci. Comput..

[15]  R. Fletcher Practical Methods of Optimization , 1988 .

[16]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[17]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[18]  Yong Wang,et al.  A new trust region method for nonlinear equations , 2003, Math. Methods Oper. Res..

[19]  Masao Fukushima,et al.  Testing Parallel Variable Transformation , 1999, Comput. Optim. Appl..

[20]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[21]  Masao Fukushima,et al.  A Globally and Superlinearly Convergent Gauss-Newton-Based BFGS Method for Symmetric Nonlinear Equations , 1999, SIAM J. Numer. Anal..

[22]  Jean Cea,et al.  Optimization - Theory and Algorithms , 1978 .

[23]  Jinyan Fan,et al.  An improved trust region algorithm for nonlinear equations , 2011, Comput. Optim. Appl..

[24]  Detong Zhu,et al.  Nonmonotone backtracking inexact quasi-Newton algorithms for solving smooth nonlinear equations , 2005, Appl. Math. Comput..

[25]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[26]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[27]  Jin-yanFan A MODIFIED LEVENBERG-MARQUARDT ALGORITHM FOR SINGULAR SYSTEM OF NONLINEAR EQUATIONS , 2003 .