Molecular mechanism of pore formation by actinoporins.

[1]  P. Schwille,et al.  Equinatoxin II permeabilizing activity depends on the presence of sphingomyelin and lipid phase coexistence. , 2008, Biophysical journal.

[2]  J. Lakey,et al.  Molecular Determinants of Sphingomyelin Specificity of a Eukaryotic Pore-forming Toxin* , 2008, Journal of Biological Chemistry.

[3]  Alfredo Molinolo,et al.  Matrix Metalloproteinase-activated Anthrax Lethal Toxin Demonstrates High Potency in Targeting Tumor Vasculature* , 2008, Journal of Biological Chemistry.

[4]  J. Gavilanes,et al.  Sea anemone actinoporins: the transition from a folded soluble state to a functionally active membrane-bound oligomeric pore. , 2007, Current protein & peptide science.

[5]  J. Gavilanes,et al.  Infrared spectroscopy study on the conformational changes leading to pore formation of the toxin sticholysin II. , 2007, Biophysical journal.

[6]  Leann Tilley,et al.  Selective permeabilization of the host cell membrane of Plasmodium falciparum-infected red blood cells with streptolysin O and equinatoxin II. , 2007, The Biochemical journal.

[7]  G. Anderluh,et al.  The equinatoxin N‐terminus is transferred across planar lipid membranes and helps to stabilize the transmembrane pore , 2007, The FEBS journal.

[8]  E. Lissi,et al.  Effect of sphingomyelin and cholesterol on the interaction of St II with lipidic interfaces. , 2007, Toxicon : official journal of the International Society on Toxinology.

[9]  J. Lakey,et al.  Membrane binding of zebrafish actinoporin-like protein: AF domains, a novel superfamily of cell membrane binding domains. , 2006, The Biochemical journal.

[10]  P. Booth,et al.  The biological significance of lipid–protein interactions , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  M. Soberón,et al.  Structural and functional analysis of the pre-pore and membrane-inserted pore of Cry1Ab toxin. , 2006, Journal of invertebrate pathology.

[12]  Masashi Miyano,et al.  Structural Basis of the Sphingomyelin Phosphodiesterase Activity in Neutral Sphingomyelinase from Bacillus cereus* , 2006, Journal of Biological Chemistry.

[13]  L. Mourey,et al.  Engineered covalent leucotoxin heterodimers form functional pores: insights into S-F interactions. , 2006, The Biochemical journal.

[14]  J. Lakey,et al.  Lipid Interactions of α‐Helical Protein Toxins , 2006 .

[15]  L. Tamm Protein-lipid interactions : from membrane domains to cellular networks , 2006 .

[16]  I. Mingarro,et al.  Peptides corresponding to helices 5 and 6 of Bax can independently form large lipid pores , 2006, The FEBS journal.

[17]  Holger Scheib,et al.  A rivet model for channel formation by aerolysin‐like pore‐forming toxins , 2006, The EMBO journal.

[18]  J. Gavilanes,et al.  A complementary microscopy analysis of Sticholysin II crystals on lipid films: Atomic force and transmission electron characterizations. , 2006, Biophysical chemistry.

[19]  R. Norton,et al.  Structure and activity of the N-terminal region of the eukaryotic cytolysin equinatoxin II. , 2006, Biochemistry.

[20]  A. Spisni,et al.  Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II. , 2006, Biopolymers.

[21]  S. Howorka,et al.  Protein components for nanodevices. , 2005, Current opinion in chemical biology.

[22]  M. Banfield,et al.  Crystal Structure of SmcL, a Bacterial Neutral Sphingomyelinase C from Listeria* , 2005, Journal of Biological Chemistry.

[23]  R. Tweten,et al.  Cholesterol-Dependent Cytolysins, a Family of Versatile Pore-Forming Toxins , 2005, Infection and Immunity.

[24]  Nir Nesher,et al.  Toxic polypeptides of the hydra--a bioinformatic approach to cnidarian allomones. , 2005, Toxicon : official journal of the International Society on Toxinology.

[25]  Wonhwa Cho,et al.  Membrane-protein interactions in cell signaling and membrane trafficking. , 2005, Annual review of biophysics and biomolecular structure.

[26]  M. Parker,et al.  Pore-forming protein toxins: from structure to function. , 2005, Progress in biophysics and molecular biology.

[27]  Helen R. Saibil,et al.  Structural Basis of Pore Formation by the Bacterial Toxin Pneumolysin , 2005, Cell.

[28]  M. Perduca,et al.  The Antineoplastic Lectin of the Common Edible Mushroom (Agaricus bisporus) Has Two Binding Sites, Each Specific for a Different Configuration at a Single Epimeric Hydroxyl* , 2005, Journal of Biological Chemistry.

[29]  R. Norton,et al.  Interaction of the eukaryotic pore-forming cytolysin equinatoxin II with model membranes: 19F NMR studies. , 2005, Journal of molecular biology.

[30]  T. McIntosh,et al.  Melittin-induced bilayer leakage depends on lipid material properties: evidence for toroidal pores. , 2005, Biophysical journal.

[31]  C. Potrich,et al.  Cytotoxic activity of a tumor protease-activated pore-forming toxin. , 2005, Bioconjugate chemistry.

[32]  C. Pederzolli,et al.  Pore formation by the sea anemone cytolysin equinatoxin II in red blood cells and model lipid membranes , 2005, The Journal of Membrane Biology.

[33]  M. Winterhalter,et al.  Determination of thermodynamic parameters of Xerocomus chrysenteron lectin interactions with N-acetylgalactosamine and Thomsen-Friedenreich antigen by isothermal titration calorimetry , 2005, BMC Biochemistry.

[34]  P. Koehl,et al.  A new lectin family with structure similarity to actinoporins revealed by the crystal structure of Xerocomus chrysenteron lectin XCL. , 2004, Journal of molecular biology.

[35]  G. Anderluh,et al.  Membrane insertion of the N-terminal α-helix of equinatoxin II, a sea anemone cytolytic toxin , 2004 .

[36]  D. Turk,et al.  Pore Formation by Equinatoxin, a Eukaryotic Pore-forming Toxin, Requires a Flexible N-terminal Region and a Stable β-Sandwich* , 2004, Journal of Biological Chemistry.

[37]  S. Zakharov,et al.  Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore , 2004, FEBS letters.

[38]  J. Gavilanes,et al.  Phenotypic selection and characterization of randomly produced non‐haemolytic mutants of the toxic sea anemone protein sticholysin II , 2004, FEBS letters.

[39]  M. Ruiz-Argüello,et al.  Lipid Phase Coexistence Favors Membrane Insertion of Equinatoxin-II, a Pore-forming Toxin from Actinia equina* , 2004, Journal of Biological Chemistry.

[40]  L. Roque,et al.  Construction of an immunotoxin with the pore forming protein StI and ior C5, a monoclonal antibody against a colon cancer cell line. , 2004, International immunopharmacology.

[41]  F. Francis,et al.  Inhibitory action of a new lectin from Xerocomus chrysenteron on cell-substrate adhesion , 2004, Molecular and Cellular Biochemistry.

[42]  D. Lodge,et al.  Cued In: Advances and Opportunities in Freshwater Chemical Ecology , 2002, Journal of Chemical Ecology.

[43]  G. Anderluh,et al.  Membrane insertion of the N-terminal alpha-helix of equinatoxin II, a sea anemone cytolytic toxin. , 2004, The Biochemical journal.

[44]  G. Anderluh,et al.  Pore Formation by Equinatoxin II, a Eukaryotic Protein Toxin, Occurs by Induction of Nonlamellar Lipid Structures* , 2003, Journal of Biological Chemistry.

[45]  Juan A Hermoso,et al.  Crystal and electron microscopy structures of sticholysin II actinoporin reveal insights into the mechanism of membrane pore formation. , 2003, Structure.

[46]  M. Ishida,et al.  Primary structure of echotoxin 2, an actinoporin-like hemolytic toxin from the salivary gland of the marine gastropod Monoplex echo. , 2003, Toxicon : official journal of the International Society on Toxinology.

[47]  J. Lakey,et al.  A Novel Mechanism of Pore Formation , 2003, Journal of Biological Chemistry.

[48]  Y. Rahbé,et al.  Xerocomus chrysenteron lectin: identification of a new pesticidal protein. , 2003, Biochimica et biophysica acta.

[49]  R. Norton,et al.  Effects of the eukaryotic pore-forming cytolysin Equinatoxin II on lipid membranes and the role of sphingomyelin. , 2003, Biophysical journal.

[50]  J. Lakey,et al.  Expression of proteins using the third domain of the Escherichia coli periplasmic-protein TolA as a fusion partner. , 2003, Protein expression and purification.

[51]  P. Lazarovici,et al.  Pore-forming Peptides and Protein Toxins , 2003 .

[52]  G. Anderluh,et al.  Actinoporins, pore-forming toxins of sea anemones (Actiniaria) , 2003 .

[53]  Gregor Anderluh,et al.  Two-step Membrane Binding by Equinatoxin II, a Pore-forming Toxin from the Sea Anemone, Involves an Exposed Aromatic Cluster and a Flexible Helix* , 2002, The Journal of Biological Chemistry.

[54]  G. Anderluh,et al.  Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria). , 2002, Toxicon : official journal of the International Society on Toxinology.

[55]  R. Norton,et al.  Solution structure of the eukaryotic pore-forming cytolysin equinatoxin II: implications for pore formation. , 2002, Journal of molecular biology.

[56]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[57]  C. Potrich,et al.  Sizing the Radius of the Pore Formed in Erythrocytes and Lipid Vesicles by the Toxin Sticholysin I from the Sea Anemone Stichodactyla helianthus , 2001, The Journal of Membrane Biology.

[58]  L. Yang,et al.  Barrel-stave model or toroidal model? A case study on melittin pores. , 2001, Biophysical journal.

[59]  R. Tweten,et al.  β-Barrel Pore-Forming Toxins: Intriguing Dimorphic Proteins† , 2001 .

[60]  C. Potrich,et al.  Effects of lipid composition on membrane permeabilization by sticholysin I and II, two cytolysins of the sea anemone Stichodactyla helianthus. , 2001, Biophysical journal.

[61]  D. Turk,et al.  Crystal structure of the soluble form of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina. , 2001, Structure.

[62]  V. Huerta,et al.  Purification and characterization of two hemolysins from Stichodactyla helianthus. , 2001, Toxicon : official journal of the International Society on Toxinology.

[63]  R. Tweten,et al.  Beta-barrel pore-forming toxins: intriguing dimorphic proteins. , 2001, Biochemistry.

[64]  J. Lakey,et al.  Pore-forming colicins and their relatives. , 2001, Current topics in microbiology and immunology.

[65]  G. Anderluh,et al.  Structure-function studies of tryptophan mutants of equinatoxin II, a sea anemone pore-forming protein. , 2000, The Biochemical journal.

[66]  P. Maček,et al.  Interaction of the pore-forming protein equinatoxin II with model lipid membranes: A calorimetric and spectroscopic study. , 1999, Biochemistry.

[67]  G. Anderluh,et al.  Antiparasite activity of sea-anemone cytolysins on Giardia duodenalis and specific targeting with anti-Giardia antibodies. , 1999, International journal for parasitology.

[68]  V. Cabiaux,et al.  Secondary structure of sea anemone cytolysins in soluble and membrane bound form by infrared spectroscopy. , 1999, Biochemical and biophysical research communications.

[69]  R. Collier,et al.  Identification of residues lining the anthrax protective antigen channel. , 1998, Biochemistry.

[70]  J. Gavilanes,et al.  Mechanism of the leakage induced on lipid model membranes by the hemolytic protein sticholysin II from the sea anemone Stichodactyla helianthus. , 1998, European journal of biochemistry.

[71]  M. Umeda,et al.  Lysenin, a Novel Sphingomyelin-specific Binding Protein* , 1998, The Journal of Biological Chemistry.

[72]  H. Bayley,et al.  The heptameric prepore of a staphylococcal alpha-hemolysin mutant in lipid bilayers imaged by atomic force microscopy. , 1997, Biochemistry.

[73]  E. Gouaux Channel-forming toxins: tales of transformation. , 1997, Current opinion in structural biology.

[74]  J. Gouaux,et al.  Designed protein pores as components for biosensors. , 1997, Chemistry & biology.

[75]  B. Strukelj,et al.  N-terminal truncation mutagenesis of equinatoxin II, a pore-forming protein from the sea anemone Actinia equina. , 1997, Protein engineering.

[76]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[77]  M. Serra,et al.  Mechanism of membrane permeabilization by sticholysin I, a cytolysin isolated from the venom of the sea anemone Stichodactyla helianthus. , 1996, Biochemistry.

[78]  A. W. Bernheimer Some aspects of the history of membrane-damaging toxins , 1996, Medical Microbiology and Immunology.

[79]  E. Zlotkin,et al.  Toxin compartmentation and delivery in the Cnidaria: the nematocyst's tubule as a multiheaded poisonous arrow. , 1996, The Journal of experimental zoology.

[80]  H. Bayley,et al.  Tumor protease-activated, pore-forming toxins from a combinatorial library , 1996, Nature Biotechnology.

[81]  G. Paratcha,et al.  The molecular basis of the self/nonself selectivity of a coelenterate toxin. , 1995, Biochemical and biophysical research communications.

[82]  C. Pederzolli,et al.  Intrinsic tryptophan fluorescence of equinatoxin II, a pore-forming polypeptide from the sea anemone Actinia equina L, monitors its interaction with lipid membranes. , 1995, European journal of biochemistry.

[83]  H. Bayley,et al.  Key Residues for Membrane Binding, Oligomerization, and Pore Forming Activity of Staphylococcal α-Hemolysin Identified by Cysteine Scanning Mutagenesis and Targeted Chemical Modification (*) , 1995, The Journal of Biological Chemistry.

[84]  P. Maček Polypeptide cytolytic toxins from sea anemones (Actiniaria). , 1992, FEMS microbiology immunology.

[85]  R. Norton,et al.  Structure and structure-function relationships of sea anemone proteins that interact with the sodium channel. , 1991, Toxicon : official journal of the International Society on Toxinology.

[86]  T. Turk Cytolytic Toxins from Sea Anemones , 1991 .

[87]  H. Lenhoff,et al.  The Biology of Nematocysts , 1989 .

[88]  W. Kem,et al.  Interfacial activity of an ion channel-generating protein cytolysin from the sea anemone Stichodactyla helianthus. , 1989, Toxicon : official journal of the International Society on Toxinology.

[89]  W. R. Kern SEA ANEMONE TOXINS: STRUCTURE AND ACTION , 1988 .

[90]  B. Dunn,et al.  Separation and characterization of four different amino acid sequence variants of a sea anemone (Stichodactyla helianthus) protein cytolysin. , 1988, Toxicon : official journal of the International Society on Toxinology.

[91]  R. Gennis Protein-lipid interactions. , 1977, Annual review of biophysics and bioengineering.

[92]  A. W. Bernheimer,et al.  Properties of a toxin from the sea anemone Stoichacis helianthus, including specific binding to sphingomyelin. , 1976, Proceedings of the National Academy of Sciences of the United States of America.